期刊文献+

将粒子残差一致性度量的滤波算法用于纯方位被动跟踪 被引量:6

APPLYING THE FILTEING ALGORITHM WITH PARTICLE RESIDUAL CONSISTENCY MEASURE TO BEARINGS-ONLY PASSIVE TRACKING
下载PDF
导出
摘要 在低信扰比条件下的纯方位被动跟踪中,针对量测似然度评估粒子权重的方式对于滤波结果的不利影响,提出了一种基于粒子残差一致性度量的粒子滤波算法.首先,利用粒子残差实现采样粒子由状态空间到量测空间的映射变换;在此基础上,通过置信度距离和置信度矩阵的构建及求解,完成对于粒子权重的合理度量.新的粒子权重评估方法实现了对于最新量测信息及粒子间蕴含冗余和互补信息的充分提取和利用,使得粒子权重度量结果更加稳定和可靠.最后,仿真实验验证了算法的有效性. Aiming at the disadvantageous influence of evaluating particles weights on the filtering resuhs in the bearings-only passive tracking of low signal-to-interference ratio, a novel particle filter algorithm based on particle residual consistency measure was proposed. Firstly, particle residual was used to realize the mapping transformation of sampling particle from state space to measurement space. Then, confidence level distance and confidence level matrix were eonstrueted to complete the reasonable evaluation of particles weights. The new method effectively extracts and uses the latest measurement information and redundancy and complementary information among particles, which makes the evaluation results of particles weights more stable and reliable. Finally, experiments demonstrate the efficiency of the proposed algorithm.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第1期75-80,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学重点项目(60634030) 国家自然科学基金(60702066) 航天科技创新基金(CASC0214) 高等学校博士学科点专项科研基金(20060699032)
关键词 粒子滤波 纯方位被动跟踪 信扰比 一致性度量 particle filtering bearings-only tracking signal-to-interference ratio consistency measure
  • 相关文献

参考文献12

  • 1Musicki D. Multi-target tracking using multiple passive bearings-only asynchronous sensors [ J]. IEEE Trans on Aerospace and Electronic Systems, 2008,44 ( 3 ) : 1151-- 1160. 被引量:1
  • 2程咏梅,潘泉,张洪才,叶西宁.基于推广卡尔曼滤波的多站被动式融合跟踪[J].系统仿真学报,2003,15(4):548-550. 被引量:19
  • 3程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 4Der Merwe R V, Doucet A, De Freitas N, et al. The unscented particle filter [ R ]. Technical Report of the Cambridge University Engineering Department CUED/F INFENG/TR, 380. England: Cambridge University Press, 2001,1-45. 被引量:1
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[ J]. IEEE Trans on Signal Processing,2002,50 (2) : 174--188. 被引量:1
  • 6Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[ J]. Proceedings of the IEEE,2007,95 (5) :899--924. 被引量:1
  • 7XUE Feng, LIU Zhong, SHI Zhang-Song. Unscented particle filter for bearings-only tracking with out-of-Sequence measurements in sensor networks [ C ]. The Sixth International Conference on Intelligent Systems Design and Appli cations, 2006,540--545. 被引量:1
  • 8Rickard K. Particle filter for positioning and tracking applictions [ D ]. Sweden, Linkoping university,2005. 被引量:1
  • 9程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 10Djuric P M, Zhang Z J, BugalloM F. Target tracking by a new class of cost-reference particle filters [ C ]. IEEE Aero-space Conference, 2008,1-9. 被引量:1

二级参考文献23

共引文献153

同被引文献33

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部