期刊文献+

多传感器顺序粒子滤波算法 被引量:11

Multisensor Sequential Particle Filter
下载PDF
导出
摘要 粒子滤波是一种基于MonteCarlo仿真的最优回归贝叶斯滤波算法.这种方法不受线性化误差和高斯噪声假定的限制,适用于任何状态转换或测量模型,因此能够很好地解决非线性、非高斯环境下系统的状态估计问题.为了能够有效地解决非线性、非高斯环境中的集中式多传感器状态估计问题,本文研究了多传感器顺序粒子滤波算法.首先,从理论上推导了一般的集中式多传感器粒子滤波模型;然后根据集中式多传感器系统的特点,提出了顺序重抽样方法.最后,给出了算法的仿真分析.仿真结果说明顺序粒子滤波方法能够明显提高多传感器系统状态估计精度,并且随着传感器数增多,改善的效果越好. Particle filter is a computer-based method for implementing an optimal recursive Bayesian filter by Monte Carlo simulations. The method may cope with any nonlinear model without any limitations of linearization error and Gaussian noises assumption, so it can be used for the state estimation problem of non-Gaussian nonlinear systems. In order to solve the centralized multisensor sate estimation problem of non-Gaussian nonlinear system, the paper proposes a new multisensor sequential particle filter. First, the general theoretical model of centralized multisensor particle filter is got. Then, a sequential resampling method is proposed according to the characteristics of centralized multisensor system. At last, a Monte Carlo simulation is used to analyze the performance of the method. The results of the simulation show that the new method can greatly improve the state estimation precision of multisensor system. Moreover, it will get more accurate estimation with more sensors.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第6期1116-1119,共4页 Acta Electronica Sinica
基金 全国优秀博士论文作者专项基金(No.2000036) 高校骨干教师基金资助项目(No.3240) 国家自然科学基金资助项目(No.60172033)
关键词 多传感器 状态估计 非线性 非高斯 粒子滤波 Computer simulation Error analysis Gaussian noise (electronic) Mathematical models Monte Carlo methods Nonlinear filtering Nonlinear systems State estimation
  • 相关文献

参考文献15

  • 1Gordon N J, Salmond. Novel approach to nonlinear/non-gaussian baysian state estimation [J]. IEE-Proceedings, 1993,140(2):107-113. 被引量:1
  • 2M Sanjeev Anllampalam, Simon Maskell, Neil Gordon. A tutorial on particle filters for online nonlinear/non-gaussian bayesial tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1
  • 3A Farina, B Ristic. Tracking a ballistic target: Comparison of several nonlinear filters[J]. IEEE Trans on AES, 2002,38(3):854-867. 被引量:1
  • 4Shawn Michael Herman. A Particle Filtering Approach to Joint Passive Radar Tracking and Target Classification [D]. Illinois: University of Illinois, 2002. 被引量:1
  • 5袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 6赵瑞,顾启泰.滤波理论的最新进展及其在导航系统中的应用[J].清华大学学报(自然科学版),2000,40(5):24-27. 被引量:3
  • 7Bar-shalom Y, Fortmann T E. Tracking and Data Association [M]. New York: Academic Press, 1988. 被引量:1
  • 8Arthur G O, Mutambara. Decentralized Estimation and Control for Multisensor Systems [M]. New York: C RC Press, 1999. 被引量:1
  • 9周宏仁 敬忠良 王培得.机动日标跟踪[M].北京:国防工业出版社,1991.. 被引量:1
  • 10何友等著..多传感器信息融合及应用[M].北京:电子工业出版社,2000:336.

二级参考文献21

  • 1沈宁,何友,王国宏.一种改进的精确最近邻PDA(IENNPDA)算法[J].现代雷达,1996,18(2):8-13. 被引量:6
  • 2南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 3何友 等.多传感器信息融合中的分层估计[J].海军航空工程学院学报,1999,(2):101-107. 被引量:7
  • 4[2]Bar-shalom Y,Fortmann T E. Tracking and Data Association [M].New York:Academic press,1988 被引量:1
  • 5[4]Yaakov Bar-Shalom.Multitarget-Multisensor Tracking,Advanced Application[M].University of Connecticut,Artech House,1990:1-23 被引量:1
  • 6[5]Kirubarajan T,Bar-Shalom Y.IMM PDA for Radar Mangement and Tracking Benchmark with ECM[J].IEEE Transactions on Aerospace and Electronics, 1998:1115-1132 被引量:1
  • 7[6]Munir A,et al.Adaptive interacting multiple model algorithm for tracking a maneuvering target[J].IEEE Proc-F,1995,142(1):11-16 被引量:1
  • 8[7]Fortmann T E,Bar-Shalom Y,Scheffe M,Gelfand S.,Detection Thresholds for Multitarget Tracking in Clutter[A].//Proc.20th IEEE Conf.on Decision &Control[C].San Diego,CA,1981 被引量:1
  • 9[9]Birmiwal K,Bar-Shalom Y.Maneuver Target Tracking a Cluttered Environment with a Variable Dimension Filter [J].IEEE Trans.Aerospace & Electronic System,Vol.AES-20,September 1984:635-645 被引量:1
  • 10[10]Blom H A P.A Sophisticated Tracking Algorithm for ATC Surveillance Data[A].//Proc.International Radar Conf.[C].Paris,France,1984 被引量:1

共引文献88

同被引文献157

  • 1潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 2胡文龙,毛士艺.多传感器多目标跟踪中的概率数据互联[J].电子学报,1996,24(9):30-35. 被引量:8
  • 3单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 4韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2004:2-6. 被引量:10
  • 5Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence, 2001, 128(1-2): 99-141. 被引量:1
  • 6Thrun S, Burgard W, Fox D. Probabilistic Robofics[M]. Cambridge, MA, USA: MIT Press, 2005. 被引量:1
  • 7Montemerlo M, Thrun S, Whittaker W. Conditional particle filters for simultaneous mobile robot localization and people-tracking[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2002. 695-701. 被引量:1
  • 8Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46. 被引量:1
  • 9Kwok C; Fox D. Map-based multiple model tracking of a moving object[J]. Lecture Notes in Artificial Intelligence, 2005, 3276: 18-23. 被引量:1
  • 10Hu W M, Hu M, Zhou X, et al. Principal axis-based correspondence between multiple cameras for people tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 663-671. 被引量:1

引证文献11

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部