期刊文献+

重抽样方法FHNN及其在入侵检测中的应用

Fast hierarchical nearest neighbor resampling method and its application to network intrusion detection
下载PDF
导出
摘要 重抽样方法是常用的解决数据非平衡问题的一种有效手段,为提高入侵检测系统的检测效率,降低数据的不平衡程度,提出了快速分层最近邻FHNN重抽样方法,采用两阶段的基于负载均衡策略的高速网络入侵检测模型,按协议类型把KDD’99的训练数据集划分并在每类子集上进行了各种实验。实验结果表明该方法不仅可以很好地删除噪声数据和冗余信息,尤其是类区域内样本,减小数据的不平衡度和样本总量,而且由于算法时间复杂度是线性阶的,在样本数量很大的情况下,运行速度非常快,适合从海量的数据中快速而有效地检测各类攻击。 Resampling methods are commonly used for dealing with the class-imbalance problem.To improve the detection rate of the minority attack in network intrusion detection and reduce the imbalance ratio.A novel algorithm named Fast Hierarchical Nearest Neighbor(FHNN) is prsented to select representative samples from network data sets.Taking the two-stage strategy with load balancing model for high-speed network intrusion detection system(HNIDS),the training dataset is splited by the protocol and the patterns for each dataset is built.Experimental results show FHNN is very efficient in tacking noise and majority class examples and faster than other methods while taking a linear order.FHNN is efficient method for rapid detection various types of attacks from the mass data.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第22期86-88,109,共4页 Computer Engineering and Applications
基金 山西省青年科学基金资助项目(No.2008021025) 山西省高等学校科技研究项目(No.20091145)
关键词 非均衡数据 重抽样方法 网络入侵检测系统 NCL算法 ADABOOST算法 imbalanced data resampling methods Network Intrusion Detection system Neighborhood Cleaning Rule Adaboost algorithm
  • 相关文献

参考文献7

  • 1赵月爱,陈俊杰,穆晓芳.非平衡技术在高速网络入侵检测中的应用[J].计算机应用,2009,29(7):1806-1808. 被引量:3
  • 2Chawla N V, Bowyer K W, Hall L O, et al.SMOTE: synthetic minodty over-sampling technique[J].Journal of Artificial Intelli- gence Research,2002,16:321-357. 被引量:1
  • 3毕华,梁洪力,王珏.重采样方法与机器学习[J].计算机学报,2009,32(5):862-877. 被引量:36
  • 4Tomek I.Two modifications of CNN[J].IEEE Transactions on Systems,Man and Communications, 1976,6(11) :769-772. 被引量:1
  • 5Kubat M, Matwin S.Addressing the curse of imbalanced train- ing sets:One sided selection[C]//Proceedings of the 14th Interna- tional Conference on Machine Learning.San Francisco: Morgan Kaufrnarm, 1997:179-186. 被引量:1
  • 6Laurikkala J.Improving identification of difficult small classes by balancing class distribution[C]//Proceedings of the 8th Con- ference on AI in Medicine.Europe: Artificial Intelligence Medicine, London, UK: Springer-Verlag, 2001 : 63 -66. 被引量:1
  • 7边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001.. 被引量:58

二级参考文献55

  • 1赵月爱,彭新光.高速网络环境下的入侵检测技术研究[J].计算机工程与设计,2006,27(16):2985-2987. 被引量:15
  • 2Valiant L G. A theory of learnable. Communications of the ACM, 1984, 27(11): 1134-1142 被引量:1
  • 3Kearns M, Valiant L G. Learning Boolean formulae or finite automata is as hard as factoring. Cambridge, MA: Harvard University Aiken Computation Laboratory. Technical Report TR-14-88, 1988 被引量:1
  • 4Kearns M, Valiant L G. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM, 1994, 41(1): 67-95 被引量:1
  • 5Schapire R E. The strength of weak learnability. Machine Learning, 1990, 5(2): 197-227 被引量:1
  • 6Dietterich T G. Ensemble methods in machine learning// Proceedings of the Multiple Classifier Systems. Cagliari, Italy, 2000:1-5 被引量:1
  • 7Freund Y, Schapire R E. Experiments with a new Boosting algorithm//Proceedings of the Thirteenth International Conference on Machine Learning (ICML). Bari, Italy, 1996: 148-156 被引量:1
  • 8Breiman L. Prediction games and arcing classifiers. Neural Computation, 1999, 11(7): 1493-1517 被引量:1
  • 9Breiman L. Bagging predictors. Machine Learning, 1996, 24 (2) : 123-140 被引量:1
  • 10Miller R G. The jackknife-a review. Biometrika, 1974, 61 (1) : 1-15 被引量:1

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部