期刊文献+

Interacting Multiple Model Algorithm with the Unscented Particle Filter (UPF) 被引量:8

引入UPF的交互式多模型的算法(英文)
下载PDF
导出
摘要 Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method. Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期366-371,共6页 中国航空学报(英文版)
基金 NationalNaturalScienceFoundationofChina(50405017)
关键词 interacting multiple model UPF UKF nonlinear/non-Gaussian interacting multiple model UPF UKF nonlinear/non-Gaussian
  • 相关文献

参考文献11

  • 1Bar-Shalom Y, Xiao-Rong L. Estimation and tracking: principles, techniques, and software [M]. Artech House, 1993. 被引量:1
  • 2徐肖豪,高彦杰,杨国庆.交互式多模型算法中模型集选择的分析研究[J].航空学报,2004,25(4):352-356. 被引量:9
  • 3Julier S J, Uhlmann J K. A general method for approximating nonlinear transformations of probability distributions [R]. UK: Robotics Research Group, Department of Engineering Science, University of Oxford, 1996. 被引量:1
  • 4Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J]. IEE Proceedings-F, 1993, 140(2): 107-113. 被引量:1
  • 5McGinnity G, Irwin G W. Multiple model bootstrap filter for manoevering target tracking[J]. IEEE Transanction on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012. 被引量:1
  • 6Gordon N J, Maskell S, Kirubarajan T. Efficient particle filters for joint tracking and classification [A]. Proceedings of SPIE: Signal and Data Processing of Small Targets[C]. Orlando, FL, 2002. 4728:439-449. 被引量:1
  • 7van der Merwe R, de Freitas N, Doucet A, et al. The unscented particle filter [A]. Proceedings of NIPS: Advances in Neural Information Processing Systems 13[C], Leen T K, Dietterich T G, Tresp V Eds. USA: Denver CO, 2000. 被引量:1
  • 8莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 9袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 10Freitas J F G de, Niranjan M, Gee A H, et al. Sequential Monte Carlo methods to train neural network models [J]. Neural Computation, 2000, 12(4): 955-993. 被引量:1

二级参考文献13

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 2[1]Blom H A P,Bar-Shalom Y.The interacting multiple model algorithm for systems with Markovian switching coefficient[J].IEEE Trans On Automatic Control,1988,33:780-783. 被引量:1
  • 3[2]Bar-Shalom Y.Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm[J].IEEE Trans On Aerospace and Electronic Systems,1989,25:296-300. 被引量:1
  • 4[5]Mazor E,Bar-Shalom Y.Interacting multiple model methods in target tracking:a survey[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-122. 被引量:1
  • 5G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25. 被引量:1
  • 6Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995. 被引量:1
  • 7M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356. 被引量:1
  • 8I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 9S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997. 被引量:1
  • 10A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com. 被引量:1

共引文献102

同被引文献79

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部