期刊文献+

不确定环境下一种多目标跟踪算法研究 被引量:1

Multi-target Tracking Algorithm under Uncertain Environment
下载PDF
导出
摘要 本文针对工程应用背景下,真实环境存在的各种不确定问题,提出一种基于多模型的多目标跟踪算法。通过双门限法判断各量测的使用情况,首先初步确定与量测可能关联的目标,然后对这些目标调用相应的跟踪算法,保证算法的可行性和实时性;由多目标状态估计信息,预测其飞行情况,并根据预测的不同飞行情况切换不同跟踪算法,保证算法的鲁棒性要求。实测数据验证本文的算法具有较好的跟踪性能,适用于工程应用。 A multi-target tracking algorithm based on multi-model is proposed to solve uncertainties in real environment. The algorithm uses dual threshold method to ensure real-time performance and tracking accuracy. The method firstly preliminary determines the targets associated with the measurements, and then tracks these targets. The algorithm also determines the flight conditions according to the target state estimation. Different method are used in accordance with different flight conditions to improve its robust and real time performance. The measured data verifies the efficiency of the algorithm when tracking targets.
出处 《光电工程》 CAS CSCD 北大核心 2010年第9期39-43,共5页 Opto-Electronic Engineering
基金 国家自然科学基金(60805013 60905016) 国家973计划项目(2009CB320600)
关键词 不确定 多模型 多目标 目标跟踪 不确定环境 uncertainties multi-model multi-target target tracking uncertain environment
  • 相关文献

参考文献11

  • 1韩崇昭..多源信息融合[M].北京:清华大学出版社,2006:488.
  • 2Reid D B.An Algorithm for Tracking Multiple Targets[J].IEEE Transactions on Automatic Control(S0018-9286),1979,24:843-854. 被引量:1
  • 3SUN Wei,LU Yao-bin,LEI Shi-wan.A multi-source information fusion MHT algorithms and applications[C] //Radar Conference,2009 lET International,April 20-22,2009:1-4. 被引量:1
  • 4Streit R L,Luginbuhl T E.Maximum Likelihood Method for Probabilistic Multi-hypothesis Tracking[C] //Proeeedings of SPIE International Symposium,Signal and Data Processing of Small Targets,Bellingham,WA,USA,1994,2235:394-405. 被引量:1
  • 5Mahler R.Multi-target Bayes filtering via first-order multi-target moments[J].IEEE Transactions on Aerospace and EiectronicSystems(S0018-9251),2003,39(4):1152-1178. 被引量:1
  • 6齐立峰,冯新喜,惠小平,白剑林.一种新的目标跟踪算法研究[J].光电工程,2009,36(3):22-27. 被引量:6
  • 7X R Li,Bar-Shalom Y.Multiple-model estimation with variable structure[J].IEEE Transactions on Automatic Control(S0018-9286),1996,41(4):478-493. 被引量:1
  • 8X R Li,Vessetin P J.A survey of maneuvering target tracking.Part V:multiple-model methods[J].IEEE Transactions on Aerospace andElectronic Systems(S0018-9251),2005,41(4):1258-1263. 被引量:1
  • 9赵艳丽,刘剑,罗鹏飞.自适应转弯模型的机动目标跟踪算法[J].现代雷达,2003,25(11):14-16. 被引量:16
  • 10Ingemar J C,Sunita L H.An Efficient Implementation and Evaluation of Reid's Multiple Hypothesis Tracking Algorithm for Visual Tracking[J].IEEE Transactions on Parrem Analysis and Machine Intelligence(S0162-8828),1996,18(2):138-150. 被引量:1

二级参考文献12

  • 1熊伟,何友,张晶炜.多传感器顺序粒子滤波算法[J].电子学报,2005,33(6):1116-1119. 被引量:11
  • 2Goodman I R, Mahler R, Nguyen H. Mathematics of Data Fusion [M]. Boston: KluwerAcademic Publishing Co,. 1997. 被引量:1
  • 3Mahler R. "Statistics 101" for multisensor multitarget data fusion [J]. IEEE A&E Systems Magazine(S0885-8985), 2004, 19(1): 53-64. 被引量:1
  • 4Mahler R. Multitarget Bayes filtering via first-order multitarget moments [J]. IEEE Transactions on Aerospace and Eleetronic Systems(S0018-9251), 2003, 39(2): 1152-1178. 被引量:1
  • 5Vo B N, Singh S, Doucet A. Sequential Monte Carlo Methods for Multi-Target Filtering with Random Finite Sets [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2005, 30(5): 1224-1245. 被引量:1
  • 6Zajic T, Mahler, R. A particle-systems implementation of the PHD multitarget tracking filter [J]. Signal Processing, Sensor Fusion, and TargetReeognitionXII, SPIEProeeedings, 2003, 50(4): 291-299. 被引量:1
  • 7Sidenbladh H, Wirkander S L. Particle filtering for random sets [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2003, 28(3): 1-31. 被引量:1
  • 8Mahler R. Objective functions for Bayesian control-theoretic sensor management, I: Muttitarget first-moment approximation[J]. Aerospace Conference.2003. Proceedings IEEE(S 1095-323X), 2003, 4:1905-1923. 被引量:1
  • 9CHARLES J. GEYER. Likelihood inference for spatial point processes [M]. Chapman and Hall, 1999: 79-140. 被引量:1
  • 10Shawn Michael Herman. A particle filtering approach to joint passive radar tracking and target classification [D]. Illinois: University of Illinois, 2002. 被引量:1

共引文献20

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部