期刊文献+

有序粒子概率假定密度跟踪算法

Sequential particle-probability hypothesis density tracking algorithm
下载PDF
导出
摘要 针对由单传感器概率假定密度滤波到多传感器情形推导困难的问题,提出了一种有序粒子概率假定密度跟踪算法。首先,推导出集中式多传感器粒子概率假定密度滤波模型,再根据集中式融合系统的特点,选取与多传感器相关的重要性密度函数,通过多传感器多步更新重采样粒子,从而实现多传感器多目标有序粒子概率假定密度跟踪。仿真结果表明,该算法的跟踪误差距离差要小于单传感器粒子概率假定密度跟踪算法,且具有更优越的跟踪性能。 For the problem of the difficulty in extending single sensor Probability Hypothesis Density(PHD) filtering to the multi-sensor case,a new sequential particle-PHD tracking algorithm is proposed.First,the general theoretical model of centralized multi-sensor particle-PHD filtering is deduced.Then,the importance density function with regard to multiple sensors is chosen according to the characteristics of centralized fusion system.The resampling particles are updated via multiple sensors.So multi- target multi-sensor sequential particle-PHD tracking is implemented.Experimental results show that the tracking miss distance of the proposed algorithm is less than single sensor particle-PHD tracking algorithm and it has better tracking behavior.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第25期58-61,64,共5页 Computer Engineering and Applications
关键词 多传感器 随机集 融合系统 多目标跟踪 multi-sensor random set fusion system multi-target tracking
  • 相关文献

参考文献13

  • 1Washburn R B.A random point process approach to multi-object tracking[C]//Proceedings of the American Control Conference,1987: 1846-1852. 被引量:1
  • 2Kamen E W.Muhiple target tracking based on symmetric measurement equations[J].IEEE Transactions on Automatic Control, 1992, 37 : 371-374. 被引量:1
  • 3Lanterman A D,Miller M I,Snyder D L,et al.Jump-diffusion processes for the automated understanding of FUR scenes[C]//SPIE Proceedings, 1994,2234: 416-427. 被引量:1
  • 4Goodman I R,Mahler R,Nguyen H.Mathematics of data fusion[M]. Boston:Kluwer Academic Publishing Co, 1997. 被引量:1
  • 5Mahler R."Statistics 101" for multisensor multitarget data fusion[J]. IEEE A&E Systems Magazine,2004,19(1):53-64. 被引量:1
  • 6Mahler R.Multitarget bayes filtering via first-order multi-target moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39:1152-1178. 被引量:1
  • 7Vo B N,Singh S,Doucet A.Sequential monte carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41:1224-1245. 被引量:1
  • 8Zajic T,Mahler B.A particle-systems implementation of the PHD multi-target tracking fiher[C]//Kadar I.SPIE Proceedings on Signal Processing,Sensor Fusion,and Target Recognition Ⅻ,2003,5096: 291-299. 被引量:1
  • 9Sidenbladh H,Wirkander S L.Particle filtering for random sets[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,28: 1-31. 被引量:1
  • 10Mahler B.Objective functions for Bayesian control-theoretic sensor management,Ⅰ:Multitarget first-moment approximation[C]//Proceedings of the 2002 IEEE Conference on Aerospace Systems,Big Sky MT,2003:8-15. 被引量:1

二级参考文献14

  • 1熊伟 ,张晶炜 ,何友 .修正的概率数据互联算法[J].海军航空工程学院学报,2004,19(3):309-311. 被引量:11
  • 2Gordon N J, Salmond. Novel approach to nonlinear/non-gaussian baysian state estimation [J]. IEE-Proceedings, 1993,140(2):107-113. 被引量:1
  • 3M Sanjeev Anllampalam, Simon Maskell, Neil Gordon. A tutorial on particle filters for online nonlinear/non-gaussian bayesial tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1
  • 4A Farina, B Ristic. Tracking a ballistic target: Comparison of several nonlinear filters[J]. IEEE Trans on AES, 2002,38(3):854-867. 被引量:1
  • 5Shawn Michael Herman. A Particle Filtering Approach to Joint Passive Radar Tracking and Target Classification [D]. Illinois: University of Illinois, 2002. 被引量:1
  • 6Bar-shalom Y, Fortmann T E. Tracking and Data Association [M]. New York: Academic Press, 1988. 被引量:1
  • 7Arthur G O, Mutambara. Decentralized Estimation and Control for Multisensor Systems [M]. New York: C RC Press, 1999. 被引量:1
  • 8周宏仁 敬忠良 王培得.机动日标跟踪[M].北京:国防工业出版社,1991.. 被引量:1
  • 9Simon J Julier, Jeffrey K Uhlmann. A new extension of the kalman filter to nonlinear systems[J].SPIE,3068,1997: 182-193. 被引量:1
  • 10Simon J Julier, Jeffrey K Uhlmann. A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on AC,2000,45(3):477-482. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部