期刊文献+

基于各类各向异性的EM-MAP-HMRF多源遥感图像融合算法

An EM-MAP-HMRF Multi-sensor Image Fusion Algorithm Based on Non-homogeneous Class and Direction
下载PDF
导出
摘要 为提高目标识别率,在目标图像融合过程中引入Markov随机场建立类别的先验分布模型,针对模型中参量β的选取问题,提出了基于各类各向异性的期望最大化-最大后验概率-多层次马尔可夫随机场集中式与分布式两种图像融合算法.实验证明,两种融合算法都既可以提高分类准确度,又能够增大抗噪能力,且二者又有不同的特色,可以根据实际要求(如,运算速度、分类准确度、计算负荷等)进行应用选择,用以提高对特定目标进行自动检测与识别的准确性. In order to improve the target identification,Markov random field(MRF)is introduced in the target fusion process to build prior probability model of a class.Then aiming at selecting model parameter β,an EM-MAP-HMRF feature-level fusion algorithm is proposed based on non-homogeneous class and direction.HMRF is divided into centric and distributed-based fusion schemes.The simulations show that the two new fusion algorithms can improve the classification accuracy,and enhance the ability to anti-interference.However,they have different advantages.The two new schemes can be used in various fusion systems for different applications and improve the effectiveness of detection and identification for specific targets.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第7期1289-1296,共8页 Acta Photonica Sinica
基金 国家教育部博士点基金(20040699015) 西北工业大学青年科技创新基金(5210102-0800-M016206)资助
关键词 图像融合 MARKOV随机场 EM算法 各类各向异性 分布式融合 集中式融合 Image fusion Markov random field EM algorithm Non-homogeneous class and direction Centric fusion Distributed fusion
  • 相关文献

参考文献29

  • 1WAI-KI C,MICHAEL K N.Markov chains:models,algorithms and applications[M].Springer,2006. 被引量:1
  • 2DANG M,GOVAERT G.Spatial fuzzy clustering using EM and markov random fields[J].System Research and Information Systems,1998,(8):183-202. 被引量:1
  • 3郭小卫,田铮,刘保利.小波域隐Markov树模型的图像去噪快速算法[J].西北工业大学学报,2004,22(4):457-462. 被引量:2
  • 4DERIN H,ELLIOTT H.Modeling and segmentation of noisy and textured images using gibbs random fields[C].IEEE Transaction on Pattern Analysis and Machine Intelligence,1987,9(1):39-55. 被引量:1
  • 5DENG H,CLAUSI D A.Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J].Pattern Recognition,2004,37(12):2323-2335. 被引量:1
  • 6XU X,LI D,SUN H.Multiscale SAR image segmentation using a double markov random field model[C].Proceedings of IEEE 7th International Symposium on Signal Processing and its Applications,2003,1:349-352. 被引量:1
  • 7MANJUNATH B S,CHELLAPPA R.A markov random field model-based approach to image interpretation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(6):606-615. 被引量:1
  • 8YAMRON J P,CARP I,GILLICK L,et al.A hidden markov model approach to text segmentation and event tracking[C].Proceedings of the IEEE International conference on Acoustics,Speech and Signal Processing,1998,1:333-336. 被引量:1
  • 9李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 10ZHANG J,MODESTINO J W,LANGAN D A.Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation[C].IEEE Transactions on Image Processing,1994,3(4):404-420. 被引量:1

二级参考文献125

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部