期刊文献+

小波域隐Markov树模型的图像去噪快速算法 被引量:2

A Fast Algorithm for Hidden Markov Tree Training in Image Denoising
下载PDF
导出
摘要 小波域隐Markov树模型(HiddenMarkovTreeModel,简称HMT)能充分表现小波系数的统计特征,但模型训练算法计算量大。文中以图像去噪为应用背景,提出了基于HMT粗分类的多树训练算法。该算法通过对不同类型的纹理建立不同的HMT,对小波系数进行粗分类,在此基础上,不同类别的小波系数被分别建模,并将粗分类HMT的参数作为最终模型训练的初始化参数,从而提高了模型的精度,同时减小了训练算法的计算量。对于含复杂场景或纹理的图像,提出了基于方差粗分类的训练算法,也能有效地提高模型精度。对自然图像和SAR图像的去噪实验表明,采用粗分类训练算法的HMT去噪模型的去噪效果在客观指标上优于现有的HMT去噪模型。 Wavelet domain hidden Markov tree (HMT) model can well capture the statistical characteristics of wavelet coefficients, but the computational complexity of its training algorithm is high. In this paper, we present a new training algorithm--HMT-based raw segmentation training algorithm for image denoising. By training different HMT models for different types of textures independently, the wavelet coefficient trees are separated into different types according to the textures' HMTs using a ML (maximum likelihood) classifier (raw segmentation). By this means, all trees of one type are modeled by one HMT which is initialized by the parameters of the raw segmentation HMT corresponding to the type of texture. For images containing complicated scenes or textures, we also present a simple block-variance-based raw segmentation algorithm which classifies the wavelet coefficient trees according to their corresponding block variance in the original image. Simulations on natural images and SAR (synthetic aperture radar) images indicate that the new algorithm performs better than the existing HMT-based algorithms in that its mean square error (MSE) is smaller and its computational overhead is less.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第4期457-462,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金 (60 3 750 0 3 ) 航空基础科学基金 (0 3 I50 3 51 )资助
关键词 小波域隐Markov树模型(HMT) 小波变换 图像去噪 粗分类 hidden Markov tree (HMT), wavelet transform, image denoising, raw segmentation
  • 相关文献

参考文献18

  • 1[1]Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Trans Pattern Anal Machine Intell, 1984, PAMI-6(11): 721~741 被引量:1
  • 2[2]Derin H, Kelly P A. Discrete-Index Markov-Type Random Processes. Proceedikgs of the IEEE, 1989, 77(10): 1485~1590 被引量:1
  • 3[3]Goutisias J. Mutually Compatible Gibbs Random Fields. IEEE Trans Inform Theory, 1984, 35(6): 1233~1249 被引量:1
  • 4[4]Giordana N, Pieczynski W. Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation. IEEE Trans Pattern Anal Machine Intell, 1997, 19(5): 465~475 被引量:1
  • 5[5]Basseville M, Benveniste A, Chou K C, Golden S A, Nikoukhah R, Willsky A S. Modeling and Estimation of Multir-esolution Stochastic Processes. IEEE Trans Inform Theory, 1992, 38(3): 766~784 被引量:1
  • 6[6]Chou K C, Golden S A, Willsky A S . Multiresolution Stochastic Models Data Fusion and Wavelet Transforms. Signal Processing, 1993, 34(12): 257~282 被引量:1
  • 7[7]Bouman C A, Shapiro M. A Multiscale Random Field Model for Bayesian Image Segmentation. IEEE Trans Image Processing, 1994, 3(3): 162~177 被引量:1
  • 8[8]Cheng H, Bouman C A. Multiscale Bayesian Segmentation Using a Trainable Context Model. IEEE Trans Image Processing, 2001, 10(4): 511~525 被引量:1
  • 9[9]Crouse M S, Nowak R D, Baraniuk R G. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans Signal Processing, 1998, 46(4): 886~902 被引量:1
  • 10[10]Romberg J K, Choi H, Baraniuk R G. Bayesian Tree-Structured Image Modeling. IEEE Trans Image Processing, 2001, 10(7): 1056~1068 被引量:1

同被引文献31

  • 1贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 2余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报,2006,35(3):224-228. 被引量:17
  • 3李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 4GEMAN S,GEMAN D.Stochastic relaxation,gibbs distribution and the bayesian restoration of images[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1984,6(6):721-741. 被引量:1
  • 5WON C S,DERIN H.Unsupervised segmentation of noisy and texture image using markov random fields[J].Graphical Models and Image Processing,1992,54(4):308-328. 被引量:1
  • 6BLEKAS K,LIKASK A,GALATSANOS N P,et al.A spatially constrained mixture model for image segmentation[J].IEEE Transactions on Neural Networks,2005,16(2):494-498. 被引量:1
  • 7ZHANG B B,ZHANG C S,YI X.Competitive EM algorithm for finite mixture models[J].Pattern Recognition,2004,37(1):131-144. 被引量:1
  • 8ZHANG Y Y,BRADY M,SMITH S.Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm[J].IEEE Transactions on Medical Image,2001,20(1):45-57. 被引量:1
  • 9NIKOU C,GALATSANOS N P,LIKAS A C.A class-adaptive spatially variant mixture model for image segmentation[J].IEEE Transactions on Image Processing,2007,16(4):1121-1130. 被引量:1
  • 10ZHANG J,MODESTINO J W,LANGAN D A.Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation[J].IEEE Transactions on Image Processing,1994,3(4):404-420. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部