期刊文献+

基于粒子滤波的分布式故障诊断 被引量:2

Distributed fault diagnosis based on particle filtering
下载PDF
导出
摘要 针对非线性、非高斯环境下多传感器的系统故障诊断问题,提出了一种新的基于粒子滤波的分布式故障诊断方法。通过粒子滤波得到的状态估计值的全概率分布信息可用于故障检测。首先建立系统分布式故障诊断模型,由于通信限制,假设各传感器只能向信息融合中心传输二进制数。在各观测值独立同分布的条件下,提出了分布式故障诊断算法,包括本地判决的设计和融合中心的准则设计。仿真结果表明了所提出算法的有效性和优越性。 Aiming at the fault diagnosis for nonlinear, non-Gaussian systems monitored by multiple sensors, a novel particle filtering based approach to distributed fault diagnosis is developed. One of its advantages is that the complete probability distribution information of state estimation from particle filtering is utilized for fault detection. Firstly the distributed fault model of system is set up, and it is assumed that sensors can only send binary data to the fusion center because of the communication constraints. Under the assumption of independent, identically distributed observations, a distributed fault detection algorithm is proposed, including local detector design and decision fusion rule design. Simulation results show the efficiency and superiority of our proposed algorithm.
出处 《传感器与微系统》 CSCD 北大核心 2008年第3期30-33,共4页 Transducer and Microsystem Technologies
关键词 粒子滤波 故障诊断 分布式 状态估计 particle filtering fault diagnosis distributed state estimation ]
  • 相关文献

参考文献12

  • 1Clark R N. Instrument fault detection[ J]. IEEE Trans Aero Elec System ,1978,14(3 ) :456-465. 被引量:1
  • 2Frank P M. Enhancement of robustness in observer-based fault detection [ J ]. Int J Control, 1994,59 (4) : 955-981. 被引量:1
  • 3Isermann R. Process fault diagnosis based on modeling and estimation methods-a survey [ J ]. Automatica, 1984,20 ( 3 ) : 387 - 404. 被引量:1
  • 4Moulines Eric. Particle filter. Ecole natioale superieure des telecommunications[ EB/OL]. [ 2005 -01 -05 ]. http :// www. tsi enst. fr/-moulines/enseignement/particle HMM Partile filter pdf. 被引量:1
  • 5王磊,刘郁林,李正东.粒子滤波理论及其在盲均衡中的应用[J].重庆邮电学院学报(自然科学版),2005,17(6):691-694. 被引量:4
  • 6Kadirkamanathan V, Li P, Jaward M H, et al. Particle filteringbased fault detection in non-linear stochastic systems [ J ]. International Journal of Systems Science, 2002,33 ( 4 ) : 259 - 265. 被引量:1
  • 7胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 8杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 9Carlin B P,Polson N G,Stoffer D S. A monte carlo approach to nonnormal and nonlinear state-space modeling[ J]. JASA,1992, 87(418) :493-500. 被引量:1
  • 10Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing data problems[ J]. J of the American Statistical Association, 1994,89 (426) :278-288 被引量:1

二级参考文献83

  • 1郑鹏,尤春艳,刘郁林,田莉.基于最大峰度准则和遗传算法的盲辨识与盲均衡[J].重庆邮电学院学报(自然科学版),2004,16(4):64-67. 被引量:4
  • 2PUNSKAYA E,ANDRIEU C,DOUCET A,et al.Particle filtering for demodulation in fading channels with non-Gaussian additive noise[J].IEEE Transactions on Communication,2002,49(4):579-582. 被引量:1
  • 3YANG Zi-gang,WANG X D.A sequential Monte Carlo blind receiver for OFDM systems in frequency-selective fading channels[J]. IEEE Trans. Signal Processing, 2002,50(2):271-280. 被引量:1
  • 4MOULINES Eric.Particle filter[OL].Ecole Natioale Superieure des Telecommunications.http://www.tsi.enst.fr/-moulines/enseignement/particle HMM Partile filter pdf.2005-01-05. 被引量:1
  • 5LIU J,CHEN R.Blind deconvolution via sequential imputations[J].American Statisticla Association, 1995,90(430):567-576. 被引量:1
  • 6MIGUEZ J,DJURIC P M.Blind equalization by sequential importance sampling[A].Proceedings of IEEE ISCAS[C], Phoenix, AZ, 2002. 被引量:1
  • 7BEROZZI T,LE D,RUYET, et al.Joint data-channel estimation using the particle filtering on multipath fading[A].Proceeding of ICT[C].Tahiti Papeete, French Polynesia, 2003. 被引量:1
  • 8BEROZZI T,LE D,RUYET,et al.On particle filtering for digital communications[A].proceeding of IEEE.Workshop on SPAWC[C]. Rome, Italy , 2003 . 被引量:1
  • 9GHIRMAI T,DJURIC P M.Multisample receivers for time-varying channels using particle filtering[A].Proceeding of IEEE.Workshop on SPAWC[C].Rome, Italy , 2003. 被引量:1
  • 10GHIRMAI T,KOTECHA J,DJURIC P M.Joint channel estimation and data detection over frequency-selective fading channels using sequential Monte Carlo filtering[A] .Proceeding of the CISS[C].Princeton, NJ, 2002. 被引量:1

共引文献352

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部