期刊文献+

基于交互式多模型的粒子滤波算法 被引量:19

Particle Filter Based on Interacting Multiple Model
下载PDF
导出
摘要 融合交互式多模型和粒子滤波,提出了一种新的多模型粒子滤波算法。该算法采用多模型结构以跟踪目标的任意机动。各模型采用粒子滤波算法,以处理非线性、非高斯问题。各模型中相对固定数目的粒子群经过相互交互、粒子滤波后再进行重抽样以减少滤波退化现象。与通用的交互式多模型算法进行了比较,试验仿真结果证实了本文新滤波算法的有效性。 Combining interacting multiple model with particle filter, a new multiple model particle filter is presented. The algorithm used the multiple models to track arbitrary maneuvering of the target. Every model used particle filter to deal with the nonlinear and non-Gaussian problems, After interaction and particle filtering, particles in the models with the fixed number are resampled to reduce the degeneracy of filtering, In the simulations, compared with the general interacting multiple model, the results demonstrate the efficiency of the new filtering method.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第10期2360-2362,2380,共4页 Journal of System Simulation
基金 国家863基金资助项目(2001AA422420-02)
关键词 交互式多模型 粒子滤波 非线性 非高斯 重抽样 interacting multiple model particle filter nonlinear / non-Gaussian resampling
  • 相关文献

参考文献8

  • 1Bar-Shalom, Y, Li Xiao-Rong. Estimation and tracking: principles,techniques, and software [M]. Artech House, 1993. 被引量:1
  • 2Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation [C]. IEE Proceedings-F,1993, 140(2): 107-113. 被引量:1
  • 3McGinnity G, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking [J]. IEEE Transactions on Aerospaceand Electronic systems, 2000, 36(3): 1006-1012. 被引量:1
  • 4Gordon N J, Maskell S, Kirubarajan T. Efficient particle filters for joint tracking and classification [C]. Proceedings of SP1E: Signal and Data Processing of Small Targets, Oliver E, and Drummond,Editor, August 2002, 4728: 439-449. 被引量:1
  • 5Doucet A, J F G de Freitas, Gordon N J. Sequential Monte Carlo Methods in Practice [M]. Springer-Verlag, New York, 2002. 被引量:1
  • 6Doucet A, Godsill S J, Andrieu C. On sequential Monte carlo sampling methods for Bayesian filtering [J]. Statistics and Computing,2000, 10(3): 197-208. 被引量:1
  • 7Liu J S, Chen R. Sequential Monte Carlo methods for dynamic systems [J]. Journal of the American Statistical Association, 1998,93(443): 1032-1044. 被引量:1
  • 8贾宇岗,梁彦,潘泉,张洪才,戴冠中.交互式多模型算法过渡过程的仿真分析[J].系统仿真学报,2002,14(1):16-18. 被引量:13

二级参考文献7

  • 1Li X R. Hybrid Estimation Techniques [A]. Control and Dynamic Systems [C]. vol 76, 1996. 1-76. 被引量:1
  • 2Mazor E, Averbuch A, Bar-Shalom Y, Dayan J. Interacting Multiple Model Methods in Multiple--Multiple Tracking: A Survey [J]. IEEE Trans on Aerospace and Electronic Systems, 1998, 34(1): 103-122. 被引量:1
  • 3Pan Q, Liang Y, Liu G, Zhang H C, Dai G Z. Performance Analysis of Interacting Multiple Models Algorithm [A]. Proc of 14th World Congress of International Federation of Automatic Control (IFAC) [C]. Beijing, China, July 1999, Vol H. 163-168. 被引量:1
  • 4Pan Q, Liang Y, Zhang H C, Dai G Z. Interacting Multiple Models Algorithm based on alpha-beta/alpha-beta-gamma filters [A], Proceedings of American Control Conference [C], Albuquerque, New Mexico, 1997, 3698-3701. 被引量:1
  • 5Liang Yan, Pan Quan, Zhou Dong-hua, Zhang Hong-cai. Adaptive Multiple Model Filter Using IMM and STF [J]. Chinese Journal of Aeronautics. 2000, 17(5): 167-171. 被引量:1
  • 6梁彦,潘泉,张洪才.常增益交互式多模型算法[J].控制理论与应用,1999,16(5):659-663. 被引量:8
  • 7贾宇岗,刘先省,晁锐,潘泉.一种新型交互式多模型算法[J].河南大学学报(自然科学版),2000,30(4):21-24. 被引量:4

共引文献12

同被引文献175

引证文献19

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部