期刊文献+

复杂背景下基于改进粒子滤波的红外人体跟踪 被引量:1

Infrared Human Tracking Based on Improved Particle Filter Under Complex Background
下载PDF
导出
摘要 为解决复杂背景下红外图像序列中的人体跟踪问题,提出了一种改进的粒子滤波跟踪方法。根据红外图像中人体目标的特点,首先建立人体的灰度直方图来提取其灰度特征,同时采用一种新的基于帧间差分和灰度概率分布图的方法提取其运动特征。然后将上述两种特征融合到粒子滤波框架中,用于粒子权值的计算,最终实现红外序列中人体的稳健跟踪。实验结果表明,和传统粒子滤波算法相比,该方法大大提高了复杂背景下红外人体跟踪的准确性和有效性,跟踪结果令人满意。 An improved particle filter tracking algorithm was proposed to solve the problem of human tracking in infrared image sequences under complex background.According to the characters of the human in the infrared images,the algorithm firstly constructed the gray histogram of the human to extract the gray feature,and at the same time utilized a new method based on the inter-frame difference and gray probability distribution image to get the motion feature.Then,the above-mentioned two features were fused into the particle filter frame to calculate the particle weights.Finally the robust tracking of human in infrared image sequences was achieved.The experimental results show that compared with the traditional particle filter algorithm,the presented method greatly improves the accuracy and effectiveness of the infrared human tracking under complex background,and the tracking results are satisfactory.
作者 王鑫 唐振民
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第10期2411-2417,共7页 Journal of System Simulation
关键词 红外人体跟踪 粒子滤波 差分 多特征融合 infrared human tracking particle filter difference multi-feature fusion
  • 相关文献

参考文献13

  • 1Yasuno M, Ryousuke S, Yasuda N, et al. Pedestrian detection and tracking in far infrared images [C]// Proc. of IEEE Intelligent Transportation Systems, 2005. USA: IEEE, 2005: 182-187. 被引量:1
  • 2Binelli E, Broggi A, Fascioli A, et al. A modular tracking system for far infrared pedestrian recognition [C]// Proc. of IEEE Intelligent Vehicles Symposium, 2005. USA: IEEE, 2005: 759-764. 被引量:1
  • 3Fengliang Xu, Xia Liu, Fujimura K. Pedestrian detection and tracking with night vision [J]. IEEE Trans. on Intelligent Transportation Systems (S1524-9050), 2005, 6(1): 63-71. 被引量:1
  • 4李金,于虹,周璐璐,梁洪.基于量子遗传和无迹粒子滤波的人体运动跟踪[J].系统仿真学报,2008,20(18):4867-4871. 被引量:7
  • 5S J McKenna, H Nait-Charif. Tracking human motion using auxiliary particle filters and iterated likelihood weighting [J]. Image and Vision Computing (S0262-8856), 2007, 25(6): 852-862. 被引量:1
  • 6王江涛,王建国,杨静宇,刘锁兰.基于梯度方向-亮度联合空间的红外人体跟踪[J].仪器仪表学报,2008,29(3):492-498. 被引量:5
  • 7Ashida J, Miyamoto R, Tsutsui H. Probabilistic Pedestrian Tracking Based on a Skeleton Model [C]//Proc. of IEEE Image Processing, 2006. USA: IEEE, 2006: 2825-2825. 被引量:1
  • 8Arulampalam M, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing (S1053-587X), 2002, 50(2): 174-188. 被引量:1
  • 9Perez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking [C]// Proc. of 7th European Conference on Computer Vision, Copenhagen, Denmark. USA: IEEE, 2002, 1: 661-675. 被引量:1
  • 10K Nummiaro, E Koller-Meier, L Van Gool. An adaptive color based particle filter [J]. Image and Vision Computing (S0262-8856), 2003, 21(1): 99-110. 被引量:1

二级参考文献26

共引文献39

同被引文献7

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部