期刊文献+

CAMSHIFT与基于核的目标跟踪算法的比较与分析 被引量:3

Comparison and analysis of CAMSHIFT and kernel based on object tracking
下载PDF
导出
摘要 CAMSHIFT和基于核的目标跟踪是两种经典的基于Mean Shift的目标跟踪算法,它们的实现过程有许多类似之处。为了说明在实际应用中如何选择合理的跟踪方案,从目标模型、候选模型、核函数、迭代过程等方面对二者进行了深入的比较和分析,指出了二者的特点和区别,对于正确理解和使用这两种方法将会有一定的帮助。 CAMSHIFT and kernel based object tracking are two classical tracking models based on mean shift algorithm,which are very similar in many ways.In order to guide to select the proper tracking method in the real application,this paper analyzes them and points the difference between them from target model,candidate model and iteration equation.The discussion on them will provide a useful help for the proper understanding and use of these two tracking models.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第28期177-179,共3页 Computer Engineering and Applications
基金 国家自然科学基金No60775020 No60805016 中国博士后科学基金(No20080430201)~~
关键词 Mean SHIFT 连续自适应均值移动跟踪算法(CAMSHIFT) 基于核的目标跟踪 权值图像 Mean Shift Continuously Adaptive Mean Shif(tCAMSHIFT) kernel based object tracking weight image
  • 相关文献

参考文献10

二级参考文献42

  • 1贾静平,赵荣椿.使用Mean Shift进行自适应序列图像目标跟踪[J].计算机应用研究,2005,22(2):247-249. 被引量:5
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3贾静平,张艳宁,柴艳妹,赵荣椿.目标多自由度Mean Shift序列图像跟踪算法[J].西北工业大学学报,2005,23(5):618-622. 被引量:8
  • 4[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40. 被引量:1
  • 5[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799. 被引量:1
  • 6[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149. 被引量:1
  • 7[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635. 被引量:1
  • 8[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219. 被引量:1
  • 9[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575. 被引量:1
  • 10[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240. 被引量:1

共引文献232

同被引文献39

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部