期刊文献+

一种新颖的无线信道跟踪方案

Novel Wireless Channel Tracking Scheme
下载PDF
导出
摘要 基于贝叶斯预测技术,提出了一种实用的时变无线信道模型。在此基础上利用粒子滤波技术强大的随机搜索能力,给出了一种稳健的无线信道跟踪方案。与目前已有的方案相比,该方案不需要知道准确的信道统计特性并且能有效地降低静态低阶AR过程的建模误差。仿真结果表明该方案具有优越的信道跟踪性能和鲁棒性。 Based on the Bayesian forecasting technology, a practical time-varying wireless channel model was proposed. Further more, on the basis of the proposed channel model, utilizing the powerful stochastic search ability of particle filtering, a robust wireless channel tracking scheme was developed. Comparing with the traditional tracking scheme, this scheme doesn't exactly need to know the channel statistics and can greatly decrease the influence of modeling error. Simulation results also show that the proposed scheme has superior tracking performance and robustness.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1623-1625,1629,共4页 Journal of System Simulation
关键词 粒子滤波 贝叶斯预测 信道模型 信道跟踪 建模误差 particle filtering Bayesian forecasting channel modeling channel tracking modeling error
  • 相关文献

参考文献11

  • 1Wang H, Chang P. On verifying the first order Markovian assumption for a Rayleigh fading channel model [J]. IEEE Trans. Vehic. Technol (S0090-6778), 1996, 45(2): 353-357. 被引量:1
  • 2Liu Z, Ma X, Giarmakis G. Space-time coding and Kalman filtering for time-selective fading channels [J]. IEEE Trans. Commun (S0018-9545), 2002, 50(2): 183-186. 被引量:1
  • 3Konminakis C, Fragouli C, Sayed A H, et al. Multi-input multi-output fading channel tracking and equalization using Kalman estimation [J]. IEEE Trans. Signal Processing (S1053-587X), 2002, 50(5): 1065-1076. 被引量:1
  • 4Huber K, Haykin S. Improved Bayesian MIMO Channel Tracking for Wireless Communications: Incorporating a Dynamical Channel [J]. IEEE Trans Wireless Communications (S1536-1276), 2006, 5(9): 2468-2476. 被引量:1
  • 5Haykin S, Huber K, Chen Z. Bayesian sequential state estimation for MIMO wireless communications [J]. Proceedings of the IEEE (S0018-9219), 2004, 92(3): 439-455. 被引量:1
  • 6Baddour K E, Beaulieu N C. Autoregressive models for fading channel simulation [C]// Proceedings of the IEEE Global Telecommunications Conference. Texas, USA: IEEE, 2001:1187-1192. 被引量:1
  • 7Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statist. Comput (S0943-4062), 2000, 10(3): 197-208. 被引量:1
  • 8Doucet A, Godsill S, Andrieu C. Particle Methods for Change Detection, System Identification, and Control[J]. Proceedings of the IEEE (S0018-9219), 2004, 92(3): 423-438. 被引量:1
  • 9Den P, Bottomley G E, T Croft, Jakes fading model revisited, IEEE Electronics letter (S0013-5194), 1993, 29(13): 1162-1163. 被引量:1
  • 10JAKES J W C. Microwave mobile communications [M]. New York: John Wiley & Sons, 1974. 被引量:1

二级参考文献8

  • 1贾宇岗,梁彦,潘泉,张洪才,戴冠中.交互式多模型算法过渡过程的仿真分析[J].系统仿真学报,2002,14(1):16-18. 被引量:13
  • 2Bar-Shalom, Y, Li Xiao-Rong. Estimation and tracking: principles,techniques, and software [M]. Artech House, 1993. 被引量:1
  • 3Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation [C]. IEE Proceedings-F,1993, 140(2): 107-113. 被引量:1
  • 4McGinnity G, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking [J]. IEEE Transactions on Aerospaceand Electronic systems, 2000, 36(3): 1006-1012. 被引量:1
  • 5Gordon N J, Maskell S, Kirubarajan T. Efficient particle filters for joint tracking and classification [C]. Proceedings of SP1E: Signal and Data Processing of Small Targets, Oliver E, and Drummond,Editor, August 2002, 4728: 439-449. 被引量:1
  • 6Doucet A, J F G de Freitas, Gordon N J. Sequential Monte Carlo Methods in Practice [M]. Springer-Verlag, New York, 2002. 被引量:1
  • 7Doucet A, Godsill S J, Andrieu C. On sequential Monte carlo sampling methods for Bayesian filtering [J]. Statistics and Computing,2000, 10(3): 197-208. 被引量:1
  • 8Liu J S, Chen R. Sequential Monte Carlo methods for dynamic systems [J]. Journal of the American Statistical Association, 1998,93(443): 1032-1044. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部