期刊文献+

基于FastICA的高光谱图像压缩技术 被引量:2

Compression Technique for Hyperspectral Imagery Based on FastICA
下载PDF
导出
摘要 提出了一种基于快速独立分量分析(FastICA)的高光谱图像压缩算法。首先引入虚拟维数算法估计图像中的目标端元个数,进而提取出感兴趣的目标端元矢量,并初始化快速独立分量分析的混合矩阵;利用最小噪声分量变换对原始数据进行降维,从降维后的主分量中提取独立分量;对独立分量进行恒虚警率检测与形态学滤波,实现目标分割。对高光谱图像进行谱间Karhunen-Loeve变换,利用比例位移法对感兴趣目标的小波系数进行提升,最后对各主分量进行最优码率的SPIHT压缩。实验结果表明,该方法在获得较高压缩性能的同时能够有效地保留感兴趣的目标。 Efficient compression for hyperspectral imagery has been the research focus for the development of remote sensing technique.The small targets information protection during the compression process without any preknowledge should be necessarily considered.This paper presents a new lossy compression method for hyperspectral imagery based on fast independent component analysis(FastICA).Virtual dimensionality is introduced to determine the number of target endmembers.The mixing matrix of FastICA is initialized by target endmembers.Minimum noise fraction is employed for dimensionality reduction of original data volumes,and FastICA is performed on the selected principal components to generate independent components.Then,constant false alarm rate detection is performed on each IC,which is followed by morphologic filtering.Karhunen-Loeve transform is used to decorrelate the spectral redundancy,general scaling-based method is selected to upshift the wavelet coefficients of interested targets.Finally,each principle component is allocated optimal rate and compressed by SPIHT algorithm.Experimental results on AVIRIS data show that the proposed method not only provides high compression performance,but also preserves targets interested effectively.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期711-715,730,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60572135) 部级预研基金
关键词 高光谱图像 独立分量分析 有损压缩 目标检测 hyperspectral imagery independent component analysis lossy compression target detection
  • 相关文献

参考文献15

  • 1童庆喜,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006:1-415. 被引量:6
  • 2HARSANYI J C.Detection and classification of subpixel spectral signatures in hyperspectral image sequences[D].Baltimore:University of Maryland,1993. 被引量:1
  • 3寻丽娜,方勇华,李新.基于CEM的高光谱图像小目标检测算法[J].光电工程,2007,34(7):18-21. 被引量:11
  • 4耿修瑞,赵永超.高光谱遥感图像小目标探测的基本原理[J].中国科学(D辑),2007,37(8):1081-1087. 被引量:20
  • 5ZHANG J P,PENG W M,CHEN Y S,et al.Hyperspectral image compression based on the protection of information of interest[C] //IEEE Geoscience and Remote Sensing Symposium.Boston,USA:IEEE,2008,966-969. 被引量:1
  • 6周宗潭,董国华等译.芬兰Aapo Hyvarinen,Juha Karhunen,Erikki Oja著.独立成分分析[M].北京:电子工业出版社,2007. 被引量:16
  • 7苏令华,李纲,衣同胜,万建伟.一种稳健的高光谱图像压缩方法[J].光学精密工程,2007,15(10):1609-1615. 被引量:17
  • 8HYV(A)RINEN A,OJA E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483-1492. 被引量:1
  • 9CHANG C I,DU Q.Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J].IEEE Trans on Geoscience and Remote Sensing,2004,42(3):608-619. 被引量:1
  • 10耿修瑞..高光谱遥感图像目标探测与分类技术研究[D].中国科学院遥感应用研究所,2005:

二级参考文献52

  • 1肖功海,舒嵘,薛永祺.显微高光谱成像系统的设计[J].光学精密工程,2004,12(4):367-372. 被引量:35
  • 2吴波,张良培,李平湘.非监督正交子空间投影的高光谱混合像元自动分解[J].中国图象图形学报(A辑),2004,9(11):1392-1396. 被引量:27
  • 3童庆喜,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006:1-415. 被引量:6
  • 4G. Franceschettii, S. Merolla, M. Tesauro, Phase quantized SAR signal processing: Theory and experiments [ J], IEEE Transactions on Aerospace and Electronic System, Vol. 35, No. 1 pp. 201-214,1999. 被引量:1
  • 5S. Eddins, M. Smith, A three-source muhirate model for image compression [ C ] , In Proc. ICASSP, Albuquerque, NM. PP. 2089-2092,1990. 被引量:1
  • 6Z. Jiefu,W. Zhensong,SAR Image Compression at very Low Bit-rate[ C ], 7th International Conference on Signal Processing,Volume: 3, On page ( s ) : 2167 vol. 3,31 Aug. - 4 Sept. 2004. 被引量:1
  • 7C. Alan, M. Kristo, L. Austin, L. Margaret, A Compression of Detected SAR imagery with JPEG2000[ C ], Proceedings of SPIE - The International society, for optical engineering, 2000, vol. 4115, pp. 510-520. 被引量:1
  • 8L. Maotang, G. Jingbo, Z. Jinping, L. Yuzhong, Real-time imagery compression method research [ C ] , Earth Observ- ing Systems Ⅷ. Edited by Barnes, William L. Proceedings of the SPIE, Volume 5151, pp. 531-539 (2003). 被引量:1
  • 9R. Cirillo, L. Poehler, N. Ziemba, Adaptive Compression Algorithm Results for Complex Synthetic Aperture Radar Data [ C ], Proceedings of SPIE, Volume 5095, Algorithms for Synthetic Aperture Radar Imagery X, Edmund G. Zelnio, Frederick D. Garber, September 2003, pp. 26-32. 被引量:1
  • 10H. Xingsong, L. Guizhong, Z. Yiyang, SAR Image Data Compression Using Wavelet Packet Transform and Universal- Trellis Coded Quantization [ C ], IEEE Transactions On Geoscience and Remote Sensing, Vol. 42, NO. 11, November 2004. 被引量:1

共引文献65

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部