期刊文献+

基于L_∞最小搜索和陪集码的高光谱图像无损及近无损压缩 被引量:12

Lossless and Near-Lossless Compression of Hyperspectral Images Based on Search for L_∞ Minimum and Coset Coding
下载PDF
导出
摘要 分布式信源编码(DSC)由于其较低的编码复杂度及较高的抗误码性被应用于高光谱图像压缩.在典型的基于陪集码的分布式高光谱图像无损压缩算法s-DSC(scalar coset DSC)框架下,本文指出最优的预测准则应为无穷范数最小,提出了基于L∞最小搜索的预测方法来逼近最优准则,并将框架推广到近无损压缩.实验表明,和原有的s-DSC相比,本文算法无损压缩的平均码率降低了大约0.25bpp,近无损性能也明显优于JPEG-LS,本文算法具有较低的计算复杂度、较高的压缩性能,且具有一定的抗误码能力,适用于星上压缩. Distributed source coding(DSC) is applied to hyperspectral image compression due to its low complexity and error resilience.In the framework of typical scalar coset coding based distributed compression method(s-DSC),it is pointed out in this paper that the infinity-norm minimization should be the best criterion for prediction,and a sub-optimal prediction method based on search for L∞ minimum is proposed to approach the criterion.In addition,the compression scheme is extended to near-lossless compression.The experimental results show that the lossless compression bitrate of the proposed method is reduced by about 0.25bpp compared to s-DSC and the near-lossless compression outperforms JPEG-LS significantly.Owing to the advantages of low complexity,high performance and error resilience,the proposed method is quite suitable for onboard compression.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第7期1551-1555,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61072065 No.61007011 No.60802076) 中央高校基本科研业务费专项资金(No.JY1000901007)
关键词 高光谱图像 无损及近无损压缩 分布式信源编码 陪集码 预测 无穷范数 hyperspectral images lossless and near-lossless compression distributed source coding coset coding prediction infinity-norm
  • 相关文献

参考文献2

二级参考文献25

  • 1张晓玲,沈兰荪.一种基于自适应预测的医学图像高效无损压缩方法[J].电子学报,2001,29(z1):1914-1916. 被引量:5
  • 2张培强,柴焱,张晓玲,沈兰荪.基于波段分组的3D-SPIHT高光谱图像无损压缩算法[J].中国图象图形学报(A辑),2005,10(4):425-430. 被引量:10
  • 3柴焱,张晓玲,沈兰荪.一种基于2D/3D混合自适应预测的高光谱图像无损压缩方法[J].电子学报,2005,33(B12):2409-2412. 被引量:3
  • 4Mielikainen J, Kaarna A. Improved back end for integer PCA and wavelet transforms for lossless compression of multispectral images[A]. Proceedings of 16th International Conference on Pattern Recognition [ C ]. Quebec, 2002,2 :257 -260. (in Chinese) 被引量:1
  • 5M J Ryan, J F Arnold. The lossless compression of AVIRIS images by vector quantization [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35 ( 3 ) :546 - 550. 被引量:1
  • 6Ryan M J,Picketing M R. An improved M-NVQ algorithm for the compression of hyperspectral data [ A]. Proceedings of 2000 International Symposium on Geoscience and Remote Sensing[ C]. Honolulu Hawaii ,2:600 - 602. 被引量:1
  • 7M R Pickering, M J Ryan. Compression of hyperspectral data using vector quantisation and the discrete cosine transform I A]. Proceedings of 2000 International Conference on Image Processing [ C ], Vancouver, 2000,2 : 195 - 198. 被引量:1
  • 8S R Tate. Band ordering in lossless compression of multispectral images[ J ]. IEEE Transactions on Computers,1997,46 (4) :477 - 483. 被引量:1
  • 9S A Martucci. Reversible compression of HDTV images using median adaptive prediction and arithmetic coding[ J ]. Proceedings of 1990 International Symposium on Circuits and Systems. New Orleans, 1990:1310 - 1313. 被引量:1
  • 10M J Weinberger, et al. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS[ R ]. HPL-98-193, Nov. 1998. 被引量:1

共引文献7

同被引文献121

  • 1童庆禧.我国高光谱遥感的发展[N].中国测绘报,2008. 被引量:2
  • 2Satellite Instruments : AIRS [ EB/OL ~. 2010. http :/! faesr, ucar. edu,/view/1042. 被引量:1
  • 3Yu G X, Vladimirova Y, Sweeting M N. Image compression systems on board satellites [ J ]. Acta Astronautica, 2009, 64 : 988 - 1005. 被引量:1
  • 4Slepian D, Wolf J K. Noiseless coding of correlated information sources[ J~. IEEE Transactions on Information Theory, 1973, 19 (4) : 471 -480. 被引量:1
  • 5Wyner A D, Ziv J. The rate distortion function for source coding with side information at the decoder[ J ] . IEEE Transactions on Information Theory, 1976, 22 ( 1 ) : 1 - 10. 被引量:1
  • 6Xiong Z, Liveris A D, Cheng S. Distributed source coding for sensor networks[ J]. IEEE Signal Processing Magzine, 2004, 21 (5) : 80 -94. 被引量:1
  • 7Pradban S S, Kusuma J, Ramchandran K. Distributed compression in a dense microsensor Network [ J 1. IEEE Signal Processing Magazine, 2002, 19(2) : 51 -60. 被引量:1
  • 8Pradhan S S, Ramehandran. Distributed source coding using syndromes ( DISCUS ) : design and construction [ J ]. IEEE Transactions on Information Theory, 2003, 49 (3) : 626 - 643. 被引量:1
  • 9Garcia-Frias J, Zhao Y. Compression of binary memoryless sources using punctured turbo codes [ J 1. IEEE Communication Letter, 2002, 6(9): 394-396. 被引量:1
  • 10Garcia-Frias J, Zhao Y. Compression of correlated binary sources using turbo codes [ J ]. IEEE Communication Letter, 2001, 5 (10) : 417 -419. 被引量:1

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部