期刊文献+

基于OSP的端元个数估计方法 被引量:1

Number of Endmembers Estimation Method Based on OSP
下载PDF
导出
摘要 针对在缺乏先验知识的情况下难以确定高光谱影像端元个数的问题,提出一种新的虚拟维数估计方法,其结果可作为端元个数的估计。该方法采用正交子空间投影(OSP)原理,逐个提取并剥离端元信号,通过比较残余值与阈值,实现虚拟维数的估计。对模拟高光谱数据和PHI高光谱影像数据的实验结果验证方法的可行性,与Nerman-Pearson法相比其具有更高的灵活性和准确性。 Due to the lack of priori knowledge,it is difficult to determine the number of endmembers for hyperspectral imageries.Aiming at this problem,this paper proposes a new method of estimating virtual dimensionality,its results can be used to estimate the number of the endmembers.Based on the principle of Orthogonal Subspace Projection(OSP),this method extracts and separates the endmember signals,estimates the number of endmembers by comparing the residual value and threshold.Experimental results prove that it is feasible to estimate the number of hyperspectral and PHI hyperspectral image data and it is more flexible and accurate than Nerman-Pearson method.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第24期280-281,F0003,共3页 Computer Engineering
关键词 高光谱影像 正交子空间投影 虚拟维数 hyperspectral image Orthogonal Subspace Projection(OSP) virtual dimension
  • 相关文献

参考文献5

  • 1普鑫.基于混合概率PCA模型高光谱图像本征维数确定[J].计算机工程,2007,33(9):204-206. 被引量:4
  • 2Winter M E. Maximum Volume Transform for Endmember Spectra Determination[C]//Proc. of Hyperspectral Data Exploitation, Theory and Applications. New Jersey, USA: John Wiley & Sons Inc., 2007: 179-203. 被引量:1
  • 3Antonio R Chang C I. An Improved N-FINDR Algorithm in Implementation[C]//Proc. of SPIE'05. [S. l.]: SPIE Press, 2005: 298-306. 被引量:1
  • 4Chang C I, Qian Du. Estimation of Number of Spectrally Distinct Signal Sources in Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 608-619. 被引量:1
  • 5Harsanyi J C, Chang C I. Hyperspectral Image Classification and Dimensionality Reduction an Orthogonal Subspace Projection Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 779-785. 被引量:1

二级参考文献7

  • 1Landgrebe D.Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data[M]//Chen C H.Information Processing for Remote Sensing.New Jersey:World Scientific Publishing Co.,2000. 被引量:1
  • 2Minka T P.Automatic Choice of Dimensionality for PCA[C]//Leen T K,Dietterich T G,Trep V.Advances in Neural Information Processing Systems.MIT Press,2001:598-604. 被引量:1
  • 3Tipping M E,Bishop C M.Probabilistic Principal Component Analysis[J].Journal of the Royal Statistical Society,1999,61(3):611-622. 被引量:1
  • 4Tipping M E,Bishop C M.Mixtures of Probabilistic Principal Component Analysis[J].Neural Computation,1999,11(2):443-482. 被引量:1
  • 5Figueiredo M A T,Leitao J M N,Jain A K.On Fitting Mixture Models[M]//Hancock E,Pellilo M.Energy Minimization Methods in Computer Vision and Pattern Recognition.New York:Springer-Verlag,1999:54-69. 被引量:1
  • 6Figueiredo M A T,Jain A K.Unsupervised Learning of Finite Mixture Models[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(3):381-396. 被引量:1
  • 7Dempster A P,Laird N M,Rubin D B.Maximum-likelihood from Incomplete Data via the EM Algorithm[J].J.Royal Stat.Soc.Ser.B,1977,39(1):1-38. 被引量:1

共引文献3

同被引文献8

  • 1钱乐祥,泮学芹,赵芊.中国高光谱成像遥感应用研究进展[J].国土资源遥感,2004,16(2):1-6. 被引量:32
  • 2KESHAVA N, MUSTRAD J F. Spectral unmixing [ J ]. IEEE Signal Processing Magazine, 2002,19 ( 1 ) : 44-57. 被引量:1
  • 3JIA S, QIAN Y. Constrained nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Trans.Geocsi.Remote sens., 2009,47 ( 1 ) : 161-173. 被引量:1
  • 4LIU X, XIA W, WANG B, ZHANG L. An approach based on constrained nonnegative matrix factorization to unmix hyper- spectral data J]. IEEE Trans.Geocsi.Remote sens. ,2011,49(2) :757-772. 被引量:1
  • 5PAUCA V, PIPER J, PLEMMONS R. Nonnegative matrix factorization for spectral data analysis [ J ]. Linear Algebra and Ap- plications, 2006,416( 1 ) ~ 29-47. 被引量:1
  • 6MIAO L, QI H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix fac- torizationE J ]. IEEE Trans Geosci Remote Sens, 2007,45 (3) : 765-777. 被引量:1
  • 7SWAYZE G A. The hydrothermal and structural history of the cuprite mining district, southwestern Nevada: an integrated geological and geophysical approach[ D ]. Boulder: University of Colorado, 1997: 399. 被引量:1
  • 8郑轶,蔡体健.稀疏表示的人脸识别及其优化算法[J].华东交通大学学报,2012,29(1):10-14. 被引量:13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部