期刊文献+

基于内容的高光谱图像无损压缩 被引量:15

Lossless compression of hyperspectral images based on contents
下载PDF
导出
摘要 提出了一种基于内容的高光谱图像无损压缩算法。采用自适应波段选择算法对高光谱图像进行降维,引入C-means算法对降维后的光谱矢量进行无监督分类。利用单调后向排序算法确定波段的预测顺序,并根据相邻波段的相关系数大小进行自适应波段分组。针对每一类地物,选取类内部分像素进行最优预测系数的训练,采用多波段线性预测的方案去除同类像素的谱间相关性,预测残差进行JPEG-LS无损压缩。对机载可见光/红外成像光谱仪(AVIRIS)与实用型模块化成像光谱仪(OMIS)获取的高光谱图像分别进行实验,并与未进行分类预测的算法比较。结果显示,提出的算法的平均压缩比分别提高约0.11和0.7,验证了该算法在无损压缩方面的有效性。 A lossless compression algorithm based on contents was proposed for hyperspectral images. An adaptive band selection algorithm was introduced to reduce the dimensionality of hyperspectral im- ages, and a C-means algorithm was used to classify the spectral vectors resulting from dimensionality reduction unsupervisedly. Then, the reverse monotonic ordering method was taken to determine the prediction ordering, hyperspectral images were divided into groups adaptively according to the correla- tion between each adjacent bands, and the scheme of multi-band linear prediction was used to elimi- nate the spectral redundancy of the identical class. For each class, partial pixels within this class were selected to train optimal predictive coefficients, and predictive errors were compressed in lossless by JPEG-LS standard. Experiments'were performed for the hyperspectral images acquired by an Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) and an Operational Modular Imaging Spectrometer (OMIS). Experiental results show that the average compression ratio of the proposed algorithm can be improved abou0.11 and 0.7 respectively as compared with above algorithms without classification prediction.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第3期668-674,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60572135) 国家863高技术研究发展计划资助项目(军口) 武器装备预研基金资助项目
关键词 高光谱图像 图像压缩 无损压缩 波带选择 光谱分类 hyperspectral imagery image compression lossless compression band selection spectralclassification
  • 相关文献

参考文献14

  • 1JensenJR.遥感数字影像处理导论[M].陈晓玲,龚威,李平湘,等译.北京:机械工业出版社,2007. 被引量:12
  • 2孙蕾,谷德峰,罗建书.最佳递归双向预测的高光谱图像无损压缩[J].光学精密工程,2009,17(11):2864-2870. 被引量:6
  • 3WU X L,MEMON N D.Context-based,adaptive lossless image coding[J].IEEE Transactions on Communications,1997,45(4): 437-444. 被引量:1
  • 4MEMON X,WU N D.Context based lossless intraband adaptive compression-cxtending calic[J].IEEE Transactions on Geoscience and Remote Sensing,2000,9: 994-1001. 被引量:1
  • 5MAGLI E,OLMO G,QUACCHIO E.Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J].IEEE Geoscience and Remote Sensing Letters,2004,1(1): 21-25. 被引量:1
  • 6MAGLI E.Multiband lossless compression of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(4): 1168-1178. 被引量:1
  • 7ZHANG J,LIU G Z.An efficient reordering prediction-based lossless compression algorithm for hyperspectral images[J].IEEE Geoscience and Remote Sensing Letters,2007,4(2): 283-287. 被引量:1
  • 8MIELIKAINEN J,TOIVANEN P.Clustered DPCM for the lossless compression of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(12): 2943-2946. 被引量:1
  • 9ABRARDO A,BARNI M,MAGLI E,et al..Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(4): 1892-1904. 被引量:1
  • 10万建伟,粘永健,苏令华,辛勤.高光谱图像压缩技术研究进展[J].信号处理,2010,26(9):1397-1407. 被引量:15

二级参考文献108

共引文献131

同被引文献173

引证文献15

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部