期刊文献+

高光谱图像的JM变换自适应降维 被引量:3

Hyperspectral images adaptive dimensionality reduction optimized by JM transform
原文传递
导出
摘要 在无需先验标签样本的情况下,非监督降维可以有效简化高光谱图像的特征空间,避免目标分类中的霍夫效应。本文提出JM非线性变换优化的自适应降维模型来研究面向图像目标分类的高光谱波段选择问题。该方法考虑波段的信息量和独立性等两个重要因子,针对其测度方法的差异性问题,引入JM变换函数进行规范化优化。选用线阵高光谱和面阵显微光谱等两个图像数据集,在k最邻近和随机森林分类器下,进行了多组监督分类实验,结果表明,在Kappa系数、总体分类精度和平均分类精度上,本文方法均优于3种非监督方法MABS、InfFS和LSFS。说明本文提出的JM变换的自适应降维模型能够有效降低特征维度,满足高光谱图像分类的高精度要求。 Hyperspectral remote sensing images,which collect rich spectral and spatial information of observed targets,usually contain dozens to hundreds of narrow bands with wavelengths ranging from the visible light region to the near-infrared spectra.With such an abundant number of spectral features,hyperspectral images(HSI)allow us to distinguish different of objects or targets by rule and line.Unfortunately,such high-dimensionality data pose a challenge in data transmission,storage,and processing.Specifically,those HSIs with high redundancy information and strong correlation are prone to a Hughes phenomenon during the image classification process.Therefore,dimensionality reduction is necessary for targets classification.Moreover,without using prior label samples,unsupervised dimensionality reduction can effectively simplify the HSI feature space,and prevent the Hughes phenomenon in the targets classification.In this paper,the Jeffries–Matusita(JM)modified adaptive band selection(JM2 ABS)method is proposed to extract proper features from HSI datasets.Generally speaking,a band that contains many information and demonstrates strong independence is a very important feature that helps unsupervised band selection methods to classify targets.The JM2 ABS method considers both the information capacity and independence of HSI bands.Given the significant differences in the measurements of a band’s information capacity and its independence,we introduce the JM transform function to normalize the distributions of the information capacity and the independence of HSI data.Thus JM2 ABS shows that both the information capacity and the independence are equally important in unsupervised dimensionality reduction.We also compare our proposed JM2 ABS method against three typical methods,namely,the modified adaptive band selection method,the Laplacian score feature selection method,and the infinite feature selection method.By using random training samples,we perform supervised classification experiments on two kinds of HSI public datasets
作者 康孝岩 张爱武 胡少兴 肖青 柴沙驼 KANG Xiaoyan;ZHANG Aiwu;HU Shaoxing;XIAO Qing;CHAI Shatuo(Key Laboratory of 3D Information Acquisition and Application,Ministry of Education,Capital Normal University,Beijing 100048,China;Engineering Research Center of Spatial Information Technology,Ministry of Education,Capital Normal University,Beijing 100048,China;School of Mechanical Engineering&Automation,Beihang University,Beijing 100191,China;State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China;Academy of Animal and Veterinary Sciences,Qinghai University,Xining,810016,China)
出处 《遥感学报》 EI CSCD 北大核心 2020年第1期67-75,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:41571369) 国家重点研发计划(编号:2016YFB0502500) 北京市自然科学基金(编号:4162034) 青海省科技计划(编号:2016-NK-138).
关键词 遥感 JM变换 规范化 自适应降维 非监督波段选择 高光谱图像 remote sensing Jeffries-Matusita transform normalization adaptive dimensionality reduction unsupervised band selection hyperspectral image
  • 相关文献

参考文献7

二级参考文献51

  • 1刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 2刘颖,谷延锋,张晔,张钧萍.一种高光谱图像波段选择的快速混合搜索算法[J].光学技术,2007,33(2):258-261. 被引量:9
  • 3Green Robert O, Pavri Betina E, Chrien Thomas G. On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6): 1194 - 1203. 被引量:1
  • 4Resmini Ronald G. The categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace [ A]. In:Proceedings of SPIE-The International Society for Optical Engineering [ C ], San Diego, California, USA, 2003,5093:581 - 590. 被引量:1
  • 5Zhang Jun-ping, Zhang Ye, Zou Bin, et al. Fusion classification of hyperspectral image based on adaptive subspace decomposition [ A ].In: International Conference on Image Processing [ C ], Vancouver,BC, Canada, 2000,3: 472 - 475. 被引量:1
  • 6Petrie G M, Heasler P G, Warner T. Optimal band selection strategies for hyperspectral data sets [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ]. Seattle, USA,1998,3:1582 - 1584. 被引量:1
  • 7Millette T L. An expert system approach to spectral band selection for remote sensing analysis [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ] , Maryland, USA, 1990: 1285 -1288. 被引量:1
  • 8Chavez P S, Berlin G L, Sowers L B. Statistical method for selecting landsat MSS ratios [ J]. Journal of applied photographic engineering,1982,1(8) :23 -30. 被引量:1
  • 9苏红军,盛业华,杜培军.自动子空间划分在高光谱影像波段选择中的应用[J].地球信息科学,2007,9(4):123-128. 被引量:15
  • 10赵春晖,陈万海,杨雷.高光谱遥感图像最优波段选择方法的研究进展与分析[J].黑龙江大学自然科学学报,2007,24(5):592-602. 被引量:37

共引文献406

同被引文献36

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部