期刊文献+

基于多波段预测的高光谱图像分布式无损压缩 被引量:39

Distributed lossless compression of hyperspectral images based on multi-band prediction
下载PDF
导出
摘要 提出了一种基于分布式信源编码的高光谱图像无损压缩算法,用于星载高光谱数据的有效压缩。为充分利用高光谱图像较强的谱间相关性,引入多波段谱间线性预测方案获取当前编码块的预测值,有效降低了编码块的最大预测残差值。在此基础上,根据最大预测残差值确定编码块各像素所属陪集的索引,通过传输每个像素所属陪集的索引代替预测残差,实现高光谱图像压缩。对星载可见/红外成像光谱仪(AVIRIS)获取的高光谱图像进行实验,并与已有的典型算法进行比较,结果显示该算法能够取得较好的无损压缩效果,同时具有较低的编码复杂度,适用于星载高光谱图像的无损压缩。 A lossless compression algorithm based on distributed source coding was proposed to compress the airborne hyperspectral data effectively.In order to make full use of the spectral correlation of hyperspectral images,a multi-band prediction scheme was introduced to acquire the prediction values of the current block and to reduce the maximal absolute value of prediction error effectively.Then,by using the maximal absolute value to determine the coset index of pixels belonging to the current block,the lossless compression of hyperspectral images was realized by transmitting the coset index of the current block instead of its prediction error.Experimental results on hyperspectral images acquired by Airborne Visible Infrared Imaging Spectrometer(AVIRIS) show that the proposed algorithm can offer both high compression performance and low encoder complexity compared with those existing classical algorithms,which is available for on-board compression of hyperspectral images.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第4期906-912,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61101183 40901216) 武器装备预研资金资助项目
关键词 高光谱图像 无损压缩 分布式信源编码 多波段预测 hyperspectral image lossless compression distributed source coding mutiband prediction
  • 相关文献

参考文献2

二级参考文献17

  • 1Magli E, Olmo G, and Quacchio E. Optimized onboard lossless and neax-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25. 被引量:1
  • 2Weinberger M J, Seroussi G, and Sapiro G. LOCO-I lossless image compression algorithm: principles and standardization into JPEGLS[J]. IEEE Transactions on Image Processing, 2000, 9(8): 1309-1324. 被引量:1
  • 3Zhang J, Fowler J E, and Liu G Z. Lossy-to-lossless compression of hyperspectral imagery using there-dimensional TCE and an integer KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 814-818. 被引量:1
  • 4Wang Lei, Wu Jiaji, and Jiao Licheng, et al.. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 587-591. 被引量:1
  • 5Qian S E. Study of hyperspectral and nmltispectral images compression using vector quantization in development of CCSDS international standards[C]. Image and Signal Processing for Remote Sensing XV, Proc. of SPIE, 2009,Vol. 7477:747700. 被引量:1
  • 6Ma Jing, Wu Chengke, and Li Yunsong, et al.. Dual-direction prediction vector quantization for lossless compression for LASIS data[C]. Proceedings of IEEE Data Compression Conference, Snowbird, UT, Mar. 2009: 458. 被引量:1
  • 7Slepian D and Wolf J K. Noiseless coding of correlated information sources[J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480. 被引量:1
  • 8Wyner A D and Ziv J. The rate-distortion function for source coding with side information at the decoder[J]. IEEE Transactions on Information Theory, 1976, 22(1): 1-10. 被引量:1
  • 9Liveris A D, Xiong Z, and Georghiades C N. Compression of binary sources with side information at the decoder using LDP'C codes[J]. IEEE Communications Letters, 2002, 6(10): 440-442. 被引量:1
  • 10Aaron A and Girod B. Compression with side information using turbo codes [C]. Proc. IEEE Data Compression Conference, Snowbird, UT, Mar. 2002: 252-261. 被引量:1

共引文献32

同被引文献365

引证文献39

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部