期刊文献+

基于空间相关性约束稀疏表示的高光谱图像分类 被引量:15

Spatial Correlation Constrained Sparse Representation for Hyperspectral Image Classification
下载PDF
导出
摘要 该文提出一种新的基于稀疏表示的高光谱图像分类方法。首先利用训练数据构造结构化字典,建立基于稀疏表示的高光谱图像分类模型;然后添加空间相关性约束项和训练数据的空间信息,提高稀疏表示模型分类的准确性;最后采用快速的交替方向乘子法求解模型。实验结果表明:该文方法能够有效提高分类精度,且分类结果稳定。 A novel classification method of hyperspectral image based on sparse representation is proposed. First, the training data is used to design a structured dictionary, and a classification model of hyperspectral image is built based on sparse representation; Then the spatial correlation and the spatial information of training data are added to improve the accuracy of this model; Finally it is solved by the rapid alternating direction method of multipliers. The experimental results show that the proposed method can improve the classification results, and the results are stable.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第11期2666-2671,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61101194 61071146) 江苏省自然科学基金(BK2011701) 高等学校博士学科点专项科研基金(20113219120024) 航遥中心对地观测技术工程实验室开放课题 中国地质调查局工作项目(1212011120227) 江苏省博士后科研基金(0901008B)资助课题
关键词 高光谱图像 稀疏表示 分类 空间相关性 Hyperspectral image Sparse representation Classification Spatial correlation
  • 相关文献

参考文献14

  • 1童庆禧,张兵,郑兰芬编著..高光谱遥感 原理、技术与应用[M].北京:高等教育出版社,2006:415.
  • 2吴泽彬,韦志辉,孙乐,刘建军.基于迭代加权L1正则化的高光谱混合像元分解[J].南京理工大学学报,2011,35(4):431-435. 被引量:14
  • 3宋娟,吴成柯,张静,刘海英.基于分类和陪集码的高光谱图像无损压缩[J].电子与信息学报,2011,33(1):231-234. 被引量:11
  • 4宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. 被引量:73
  • 5Melgani F and Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. 被引量:1
  • 6Valls C G, Shervashidze N, and Borgwardt K M. Spatio- spectral remote sensing image classification with graph kernels[J]. IEEE Geoscienee and Remote Sensing Letters, 2010, 7(4): 741-745. 被引量:1
  • 7Plaza A, Benediktsson J A, Boardman J W, et al.. Recent advances in techniques for hyperspectral image processing [J]. Remote Sensing of Environment, 2009, 113(9): 110-122. 被引量:1
  • 8Chen Yi, Nasrabadi N M, and Tran T D. Hyperspectral image classification using dictionary based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985. 被引量:1
  • 9Wright J, Yang A Y, Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. 被引量:1
  • 10Dias J M B and Figueiredo M A T. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing[C]. 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 2010: 1-4. 被引量:1

二级参考文献44

  • 1Magli E, Olmo G, and Quacchio E. Optimized onboard lossless and neax-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25. 被引量:1
  • 2Weinberger M J, Seroussi G, and Sapiro G. LOCO-I lossless image compression algorithm: principles and standardization into JPEGLS[J]. IEEE Transactions on Image Processing, 2000, 9(8): 1309-1324. 被引量:1
  • 3Zhang J, Fowler J E, and Liu G Z. Lossy-to-lossless compression of hyperspectral imagery using there-dimensional TCE and an integer KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 814-818. 被引量:1
  • 4Wang Lei, Wu Jiaji, and Jiao Licheng, et al.. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 587-591. 被引量:1
  • 5Qian S E. Study of hyperspectral and nmltispectral images compression using vector quantization in development of CCSDS international standards[C]. Image and Signal Processing for Remote Sensing XV, Proc. of SPIE, 2009,Vol. 7477:747700. 被引量:1
  • 6Ma Jing, Wu Chengke, and Li Yunsong, et al.. Dual-direction prediction vector quantization for lossless compression for LASIS data[C]. Proceedings of IEEE Data Compression Conference, Snowbird, UT, Mar. 2009: 458. 被引量:1
  • 7Slepian D and Wolf J K. Noiseless coding of correlated information sources[J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480. 被引量:1
  • 8Wyner A D and Ziv J. The rate-distortion function for source coding with side information at the decoder[J]. IEEE Transactions on Information Theory, 1976, 22(1): 1-10. 被引量:1
  • 9Liveris A D, Xiong Z, and Georghiades C N. Compression of binary sources with side information at the decoder using LDP'C codes[J]. IEEE Communications Letters, 2002, 6(10): 440-442. 被引量:1
  • 10Aaron A and Girod B. Compression with side information using turbo codes [C]. Proc. IEEE Data Compression Conference, Snowbird, UT, Mar. 2002: 252-261. 被引量:1

共引文献93

同被引文献255

引证文献15

二级引证文献291

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部