期刊文献+

DSC的超光谱图像无损压缩算法 被引量:2

Lossless compression algorithm for hyperspectral images based on DSC
下载PDF
导出
摘要 有效的星载超光谱图像压缩技术对于解决超光谱图像实时传输极为重要。针对超光谱图像传统的联合编解码算法的不足,提出了一种基于分布式信源编码(Distributed Source Coding,DSC)的超光谱图像无损压缩算法。为利用超光谱图像的局部空间相关性,将超光谱图像进行分块处理;引入多元线性回归模型构建编码块的边信息,并为每个编码块选取最优的预测阶数,以有效利用超光谱图像的局部谱间相关性。根据(n,k)线性分组码的原理,通过多元陪集码实现超光谱图像的分布式无损压缩。实验结果表明:该算法能够取得较好的无损压缩性能,同时具有较低的编码复杂度,适合星载超光谱图像的压缩实现。 The efficient onboard lossless compression is very important for the real-time transmission of hyperspectral images. Due to the shortages of the traditional joint encoding and decoding algorithms of hyperspectral images, a lossless compression algorithm based on distributed source coding(DSC) was proposed. To make use of the local spatial correlation, multiple linear regression was employed to construct the side information of each block, and the optimal predictive order was determined for each block in order to make full use of the local spectral correlation. According to the principle of( n, k)linear grouping codes, distributed lossless coding of hyperspectral images was realized by using multilevel coset codes. Experimental results show that the proposed algorithm achieved competitive compression performance and low complexity compared with those existing classical algorithms, which is suitable for the onboard compression of hyperspectral images.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第3期217-223,共7页 Infrared and Laser Engineering
基金 河南省重点科技攻关计划项目(122102210563 132102210215) 河南省高等学校重点科研项目计划(15B520008)
关键词 超光谱图像 无损压缩 分布式信源编码 hyperspectral imagery lossless compression distributed source coding
  • 相关文献

参考文献11

  • 1童庆禧,张兵,郑兰芬主编..高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:196.
  • 2Rizzo F,Carpentieri B,Motta G,et al.Low-complexity lossless compression of hyperspectral imagery via linear prediction[J].IEEE Signal Processing Letter,2005,12(2):138-141. 被引量:1
  • 3Magli E,Olmo G,Quacchio E.Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J].IEEE Geoscience and Remote Sensing Letters,2004,1(1):21-25. 被引量:1
  • 4Rizzo F,Carpentieri B.High performance compression of hyperspectral imagery width reduced search complexity in the compressed domain[C]//Proceedings Data Compression Conference,2004:479-488. 被引量:1
  • 5Slepian D,Wolf J K.Noiseless coding of correlated pnformation sources[J].IEEE Transactions on Information Theory,1973,19(4):471-480. 被引量:1
  • 6Magli E,Barni M,Abrardo A,et al.Distributed source coding techniques for lossless compression of hyperspectral images[J].EURASIP Journal on Advanced Signal Processing,2007,2007(1):1-13. 被引量:1
  • 7Wu X L,Memon N D.Context-based,adaptive lossless image coding[J].IEEE Transactions on Communications,1997,45(4):437-444. 被引量:1
  • 8Abrardo A,Barni M,Magli E,et al.Error-Resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(4):1892-1904. 被引量:1
  • 9宋娟,吴成柯,张静,刘海英.基于分类和陪集码的高光谱图像无损压缩[J].电子与信息学报,2011,33(1):231-234. 被引量:11
  • 10宋娟,李云松,吴成柯,王柯俨.基于L_∞最小搜索和陪集码的高光谱图像无损及近无损压缩[J].电子学报,2011,39(7):1551-1555. 被引量:12

二级参考文献19

  • 1柴焱,张晓玲,沈兰荪.一种基于2D/3D混合自适应预测的高光谱图像无损压缩方法[J].电子学报,2005,33(B12):2409-2412. 被引量:3
  • 2Magli E, Olmo G, and Quacchio E. Optimized onboard lossless and neax-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25. 被引量:1
  • 3Weinberger M J, Seroussi G, and Sapiro G. LOCO-I lossless image compression algorithm: principles and standardization into JPEGLS[J]. IEEE Transactions on Image Processing, 2000, 9(8): 1309-1324. 被引量:1
  • 4Zhang J, Fowler J E, and Liu G Z. Lossy-to-lossless compression of hyperspectral imagery using there-dimensional TCE and an integer KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 814-818. 被引量:1
  • 5Wang Lei, Wu Jiaji, and Jiao Licheng, et al.. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 587-591. 被引量:1
  • 6Qian S E. Study of hyperspectral and nmltispectral images compression using vector quantization in development of CCSDS international standards[C]. Image and Signal Processing for Remote Sensing XV, Proc. of SPIE, 2009,Vol. 7477:747700. 被引量:1
  • 7Ma Jing, Wu Chengke, and Li Yunsong, et al.. Dual-direction prediction vector quantization for lossless compression for LASIS data[C]. Proceedings of IEEE Data Compression Conference, Snowbird, UT, Mar. 2009: 458. 被引量:1
  • 8Slepian D and Wolf J K. Noiseless coding of correlated information sources[J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480. 被引量:1
  • 9Wyner A D and Ziv J. The rate-distortion function for source coding with side information at the decoder[J]. IEEE Transactions on Information Theory, 1976, 22(1): 1-10. 被引量:1
  • 10Liveris A D, Xiong Z, and Georghiades C N. Compression of binary sources with side information at the decoder using LDP'C codes[J]. IEEE Communications Letters, 2002, 6(10): 440-442. 被引量:1

共引文献51

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部