期刊文献+

一种新的基于峰度的盲源分离开关算法 被引量:20

A New Switching Algorithm of Blind Source Separation Based on Kurtosis
下载PDF
导出
摘要 盲源分离(BSS)算法通常需预先假设源信号的概率密度函数(PDF),并由此获得关键的激活函数(AF),进而从混合信号中分离出源信号。但若假设的概率密度函数与真实概率密度函数差异较大,源信号将不能被正确分离。基于峰度的盲源分离开关算法无需假设源信号的概率密度函数,可直接对独立分量分析(ICA)中的激活函数进行自适应学习。计算机仿真证明,该算法可有效进行盲源分离。 In blind source separation (BSS), the general methods firstly assume the probability density function (PDF) of sources to obtain the important activation function (AF), and then separate the source signal from mixture signals. If the assumed PDF is different from the true PDF considerably, the sources will not be separated correctly. Switching algorithm of blind source separation based on kurtosis is used to adaptively learn activation function of the independent component analysis (ICA) without assuming the PDF of sources. Computer simulation shows that this algorithm can separate sources effectively.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第1期185-188,206,共5页 Journal of System Simulation
关键词 盲源分离 独立分量分析 激活函数 峰度 开关算法 blind source separation independent component analysis activation function kurtosis switching algorithm
  • 相关文献

参考文献10

  • 1杨行峻,郑君里编著..人工神经网络与盲信号处理[M].北京:清华大学出版社,2003:399.
  • 2王惠刚,梁红,李志舜.任意信号源的盲分离[J].信号处理,2002,18(2):151-154. 被引量:4
  • 3Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995, 7 (6): 1004-1159. 被引量:1
  • 4Lee T W. Independent component analysis using an extended infomax algorithm for mixed subgaussion and supergaussion sources[J]. Neural Computation, 1999, (11): 417-441. 被引量:1
  • 5Amri S, Cichocki A. Adaptive blind signal processing--neural network approaches[J]. Proceedings of the IEEE, 1998, 86(10):2026-2046. 被引量:1
  • 6Cichocki A. On-lone adaptive algorithms in nonstationary environments using a modified conjugate gradient approach[A]. In:Proc. IEEE Workshop Neural Networks for Signal Processing[C].1997, 316-325. 被引量:1
  • 7Amari S. Stability analysis of adaptive blind source separation[J].Neural Network, 1997, 10 (8): 1345-1351. 被引量:1
  • 8Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994, 36:287-314. 被引量:1
  • 9Amari S, Cardoso. Blind source separation--semi-parametric statistical approach[J]. IEEE Trans. on Signal Processing, Dec. 1997,45(11): 2692-2700. 被引量:1
  • 10Girolami M. An alternative perspective on adaptive independent component analysis algorithms[J]. Neural Computation, 1998, 10:2103-2114. 被引量:1

二级参考文献9

  • 1[1]L. Tong, R. Liu, V. Soon and Y. Huang, "Indeterminacy and identifiability of blind identification." IEEE Trans.Circuits Syst., Vol.38, May, 1991, pp.499-509; 被引量:1
  • 2[2]A. Belouchrani, K A. Merain, J. F. Cardoso and E.Moulines, "A blind source separation technique using second order statistics." IEEE Trans. on Signal Processing,Vol.45, No.2, Feb., 1997, pp.434-444; 被引量:1
  • 3[3]P. Comon, "Contrasts for multichannel blind deconvolution." IEEE Signal Processing Letters, Vol.3,1997, pp.209-211; 被引量:1
  • 4[4]A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Computation, Vol.7,1995, pp.1129-1159; 被引量:1
  • 5[5]P. Comon, "Independent component analysis: a new concept?" Signal Processing, Vol.36, No.3, Apr.,1994,pp.287-314; 被引量:1
  • 6[6]A. Dempster, N. Laird and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm." J.Royal Statistical Society Series B, Vol.39, 1977, pp. 1-38; 被引量:1
  • 7[7]R.M. Neal and G. Hinton, "A new view of the EM algorithm that justifies incremental, sparse, and other variants."Download at http://www.cs.toronto.edu/~radf ord/; 被引量:1
  • 8[8]J. E Cardoso, "Infomax and maximum likelihood for blind source separation." IEEE Signal Processing Letters, Vol.4,April, 1997, pp. l12-114; 被引量:1
  • 9[9]S. Amari, "Natural gradient works efficiently in earning."Neural Computation, Vol. 10, 1998, pp.251-276; 被引量:1

共引文献3

同被引文献170

引证文献20

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部