期刊文献+

基于盲源分离SAR图像相干斑抑制 被引量:2

Speckle Reduction for SAR Image Based on Blind Source Separation
下载PDF
导出
摘要 针对SAR图像相干斑的随机性,采用统计信号处理中盲源分离的方法进行去噪。方法利用了基于峰度的盲源分离(BSS)开关算法,从轮廓(contourlet)变换域和小波的多方向滤波器分解(DFB)的变换域中,进行盲源分离以达到SAR图像的去噪。实验结果显示,与contourlet变换域的其他去噪方法相比,基于峰度的BSS开关算法不仅从视觉上对图像的质量有明显改进,而且在量化图像指标上也得到了较大的提高;而contourlet变换域与小波的多方向分解(DFB)变换域的相应的各类去噪方法相比,后者能得到更好的结果。 In view of the random nature of speckle noise of SAR image, a method based on blind source separation used in statistical signal processing was proposed for wiping off the speckle noise of SAR image in this paper. This method took the kurtosis as the optimizing function of the switching algorithm of blind source separation. In order to get rid of the speckle noise of SAR image, the image was translated into the contourlet area and ameliorated wavelet area, then separated the coefficients of translation area. The experimental results show that the results using this methods are better than that using the other methods of translation area. And the new translation area has preferable results. It materializes that not only a good vision of image was gotten but the quality indices were greatly improved.
作者 王瑞霞 林伟
出处 《计算机仿真》 CSCD 北大核心 2009年第9期164-167,共4页 Computer Simulation
基金 国家自然科学基金(60375003) 航空基础科学基金(03I53059)
关键词 轮廓变换 小波 方向滤波器组 隐马尔科夫树模型 盲源分离 Contourlet transformation Wavelet Directional filter banks ( DFB ) Hidden Markov tree (HMT) Blind source separation (BSS)
  • 相关文献

参考文献15

  • 1谢海慧..SAR相干斑抑制及图像压缩的小波域方法[D].电子科技大学,2004:
  • 2J S Lee. Speckle suppression and analysis for synthetic aperture radar images[ J]. Computer Graphics and Image Processing. 1986 - 5,25:636-643. 被引量:1
  • 3D T Kuan and A A Sawchuk. Adaptive restoration of image with speckle [C]. Acoustics. Speech and Sig. Proc, IEEE Trans. 1987, ASSP(35) :373 -383. 被引量:1
  • 4V S Frost, J A Stiles, K S Shanmugan, J C Holtzman. A mode for radar image and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1982. 157 - 165. 被引量:1
  • 5林伟,田铮.极化SAR图像的聚类序列投影寻踪模型方法[J].电波科学学报,2006,21(5):682-686. 被引量:4
  • 6M N Do, M Vetterli. Contourlets [M]. Acade - mic Press., 2002. 被引量:1
  • 7E J Candes, D Donoho. Curvelets: A Surp - risingly Effective Non - adaptive Representa - tion for objects with Edges [ M ]. A Cohen. C Rabut, L L Schumaker. Curve and Fitting, Surface Nashville : Vanderbih University Press, 1999. 被引量:1
  • 8M N Do, M Vetterli. The Contourlet Transform: An Efficient Directional Muhiresolution Image Repre - sentation[ J]. IEEE Trans. Image Processing, 2005.1 - 16. 被引量:1
  • 9M N Do, Vetterli M Contourlets. A directional muhiresolution image representation [ C ]. Proc of IEEE Intetrnational Conference. on Image Processing, Rochester, NY. 2002. 357-360. 被引量:1
  • 10马建仓,牛奕龙,陈海洋编著..盲信号处理[M].北京:国防工业出版社,2006:281.

二级参考文献26

  • 1林世明,杨健.目标散射矩阵的特征值理论和雷达天线的最优极化[J].电波科学学报,1995,10(1):11-15. 被引量:2
  • 2Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995, 7 (6): 1004-1159. 被引量:1
  • 3Lee T W. Independent component analysis using an extended infomax algorithm for mixed subgaussion and supergaussion sources[J]. Neural Computation, 1999, (11): 417-441. 被引量:1
  • 4Amri S, Cichocki A. Adaptive blind signal processing--neural network approaches[J]. Proceedings of the IEEE, 1998, 86(10):2026-2046. 被引量:1
  • 5Cichocki A. On-lone adaptive algorithms in nonstationary environments using a modified conjugate gradient approach[A]. In:Proc. IEEE Workshop Neural Networks for Signal Processing[C].1997, 316-325. 被引量:1
  • 6Amari S. Stability analysis of adaptive blind source separation[J].Neural Network, 1997, 10 (8): 1345-1351. 被引量:1
  • 7Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994, 36:287-314. 被引量:1
  • 8Amari S, Cardoso. Blind source separation--semi-parametric statistical approach[J]. IEEE Trans. on Signal Processing, Dec. 1997,45(11): 2692-2700. 被引量:1
  • 9Girolami M. An alternative perspective on adaptive independent component analysis algorithms[J]. Neural Computation, 1998, 10:2103-2114. 被引量:1
  • 10J J Van Zyl. Unsupervised classification of scattering behavior using radar polarimetry data [J]. IEEE Trans. Geosci. Remote Sensing, 1989, 27(1): 36-45. 被引量:1

共引文献22

同被引文献17

  • 1牛奕龙,王毅.基于广义高斯分布模型的盲源分离算法[J].计算机仿真,2006,23(10):84-88. 被引量:2
  • 2王丽娜,郭迟,李鹏.信息隐藏技术实验教程[M].武汉:武汉大学出版社,2003. 被引量:3
  • 3Kao Chuan-Ho, Hwang Ren-Junn. Information Hiding in Lossy Compression Gray Scale Image [ J ]. TamKang Journal of Science and Engineering, 2005,8(2) :99-108. 被引量:1
  • 4王丽娜.信息隐藏技术[M].武汉:武汉大学出版社,2003.2-5. 被引量:1
  • 5汪小帆,戴跃伟,茅耀斌.信息隐藏技术方法与应用[M].北京:电子工业出版社,2000.35-41. 被引量:1
  • 6Lie Wennung, Chang Lichun. Robust and high-qualityti me-domain audio watermarking based onlow-frequency am-plitude modification[ J]. IEEE Transactions on Multi media, 2006,8( 1 ) :46- 59. 被引量:1
  • 7Lie Wen-Nung, Lin Guo-Shiang. A feature-based classification technique for blind image steganalysis. IEEE Transactions on Multimedia, 2005, 7(6) :1007-1020 . 被引量:1
  • 8Zhan-Li Sun.An Extension of MISEP for Post-Nonlinear-Lin-ear Mixture Separation[J].IEEE Trans.on Circuits and System-Ⅱ:Express Briefs,2009,56(8):654-658. 被引量:1
  • 9M F Fahmy.A New Technique for Blind Source Separation of PostNonlinear Mixture[J].2010 IEEE International Symposium onSignal Processing and Information Technology,2010:196-201. 被引量:1
  • 10Leonardo Tomazeli Duarte,Christian Jutten.A Mutual InformationMinization Approach for A Class of Nonlinear Recurrent SeparatingSystems[J].Machine Learning for Signal Processing,2007:122-127. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部