期刊文献+

欠定混叠稀疏分量分析的超平面聚类算法 被引量:3

Hyperplane Clustering Algorithm of Underdetermined Mixing Sparse Component Analysis
下载PDF
导出
摘要 已有的大多数稀疏分量分析算法都是假定源信号是充分稀疏的,或经过小波变换、Fourier变换等后是充分稀疏的,该论文对源信号的稀疏性要求放宽了条件,提出了一种新的基于超平面聚类的欠定混叠稀疏分量分析算法。算法在观察信号向量集中寻找线性无关的向量组,经过分析位于同一个超平面的观测信号向量的数目,确定所有超平面的法向量,通过求解与聚类后的超平面法向量都正交的向量,辨识出混叠矩阵A的所有列向量。数值仿真试验表明了算法的有效性。 Most of sparse component analysis algorithms suppose that source signals are sufficiently sparse or by wavelet packets or FFT. The condition about sparsity of sources was loosened and a new underdetermined mixing sparse component analysis algorithm was proposed based on hyperplane clustering. The algorithm researched linear independent vectors in observed signals, determines all normals ofhyperplanes by analyzing the number of observed signal vectors and identifies all column vectors of mixing matrix A through finding the vectors that are orthogonal to the normals of hyperplanes. Numerical simulation illustrates the effectiveness of proposed algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第7期1826-1828,共3页 Journal of System Simulation
基金 广东省自然科学基金(07001797 8151009001000044) 广州市科技计划项目(2007J1-C0501)
关键词 稀疏分量分析 欠定混叠 稀疏阶 超平面聚类 sparse component analysis underdetermined mixtures sparse of level hyperplane clustering
  • 相关文献

参考文献5

二级参考文献28

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:210
  • 2章晋龙,谢胜利,何昭水.盲分离问题的可分性理论(英文)[J].自动化学报,2004,30(3):337-344. 被引量:6
  • 3高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 4Kawamoto M, Matsuoka K and Ohnishi N. A method of blind separation for nonvolved non-stationary signals [J]. Neurocomputing,1998, 22: 157-171. 被引量:1
  • 5Robert A, Sholo A, Shoji M, et al. Time domain blind source separation of non-stationary convolved signals by utilizing geometric beamforming [A]., Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing [C]. USA: 2002. 445 --454. 被引量:1
  • 6Robert A, Herbert B. On-line timedomain blind source separation of nonstationary convolved signals[A]. Proceedings of the International Symptom on independent component analysis and blind signal separation (ICA) [C]. Japan: 2003. 1-6. 被引量:1
  • 7Wu H C, Principe J C. A unifying criterion for blind source separation and decorrelation: simultaneous diagonalization of correlation matrices [A]. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing [C]. USA: 1997.24-26, 496-505. 被引量:1
  • 8Amari S. Natural gradient works efficiently in learning [J]. Neural Computing, 1998, 10(2): 251-276. 被引量:1
  • 9Shindo H. Blind source separation by a geometrical method [A].Proceedings of the 2002 International Joint Conference on Neural Networks [C]. USA: 2002. 1109 -1114. 被引量:1
  • 10Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995, 7 (6): 1004-1159. 被引量:1

共引文献58

同被引文献20

  • 1高鹰,谢胜利,许若宁,李朝晖.基于粒子群优化算法的稀疏信号盲分离[J].系统仿真学报,2006,18(8):2264-2266. 被引量:11
  • 2HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 3刘海林.基于广义特征值的病态混叠盲源分离算法[J].电子学报,2006,34(11):2072-2075. 被引量:8
  • 4Chu-jun Yao and Hailin Liu.Mixing matrix recovery of underdetermined source separation based on sparse respresentation.International conference on computational intelligence and security,2007. 被引量:1
  • 5P.G.Georgiev,F.Theis,A.Cichocki,Sparse component analysis and blind source separation of underdetermined mixtures,IEEE Transactions on Neural Networks,July 2005,Vol.16,No.4,pp.992-996. 被引量:1
  • 6Hai-Lin Liu,Chu-Jun Yao and Jia-Xun Hou.A New Algorithm for the Underdetermined Blind Source Sepatation Based on Sparse Component Analysis[J].IntemationalJoumal of Pattern Recognition and Aritificial Intelligence,Vol.23,No.1(2009) 71-85. 被引量:1
  • 7Tucker L R. Some mathematical notes on three-modefactor analysis[J]. Psychometrika, 1966, 31(3) : 279-311. 被引量:1
  • 8Paatero P,Tapper U. Positive matrix factorization: anon-negative factor model with optimal utilization of er-ror estimates of data values [ J ]. Environmetrics,1994,5(2) : 111-126. 被引量:1
  • 9Lee D D,Seung H S. Learning the parts of objects bynon-negative matrix factorization [ J ]. Nature, 1999,401(6755) : 788-791. 被引量:1
  • 10Hazan T,Polak S, Shashua A. Sparse image codingusing a 3D non-negative tensor factorization[ C ]//10thIEEE International Conference on Computer Vision‘Beijing,2005 : 50-57. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部