期刊文献+

基于扩展Infomax算法的变步长在线盲分离 被引量:7

Variable Step-size Algorithm for On-line Blind Source Separation Based on Extended Infomax
下载PDF
导出
摘要 由于扩展的Infomax算法需要一定的样本长度来估计信号的峭度,所以常采用离线批处理的方式,但这种方法不能处理混合矩阵发生变化的情况。通过判断系统混合矩阵是否改变,改进了在线估计峭度的模型,同时为解决在线算法中收敛速度和稳态误差的矛盾,提出了一种新的步长更新算法,该算法根据信号的分离状态与峭度曲线收敛程度的关系,采用峭度方差为参数来控制步长的变化,使得步长的选择与分离状态相结合,减小了稳态误差,仿真结果证实了该算法的有效性。 The Extended Infomax algorithm usually separates the signals off-line, because it requires adequate samples to estimate the kurtosis of the outputs. However, the batch processing will fall when the mixed channel changes, An improved on-line method to estimate the kurtosis was introduced, which was according to the detection of mixed channel matrix, mean while, a novel variable step-size algorithm was proposed to solve the tradeoff between convergence speed and steady-state error. This step-size update regulation was controlled by the kurtosis covariance of outputs, as reason was that the fluctuation of the kurtosis could describe the state of separation. This adaptive algorithm decreased the steady-state error efficiently. The simulations have verified its validity.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第19期4513-4516,共4页 Journal of System Simulation
关键词 盲源分离 独立分量分析 扩展Infomax 在线算法 变步长 峭度方差 blind source separation independent component analysis extended Information-maximization on-line algorithm variable step-size the covariance of kurtosis
  • 相关文献

参考文献6

  • 1P Comon.Independent component analysis,a new concept?[J].Signal Processing (S0165-1684),1994,36(1):287-314. 被引量:1
  • 2A J Bell,T J Sejnowski.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation (S0899-7667),1995,7(6):1129-1159. 被引量:1
  • 3T W Lee,M Girolami,T J Sejnowski.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources[J].Neural Computation (S0899-7667),1999,11(1):417-441. 被引量:1
  • 4杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.
  • 5张道信,吴小培,沈谦,郭晓静.独立分量提取的在线算法及其应用[J].系统仿真学报,2004,16(1):17-19. 被引量:10
  • 6牛龙,马建仓,王毅,陈海洋.一种新的基于峰度的盲源分离开关算法[J].系统仿真学报,2005,17(1):185-188. 被引量:20

二级参考文献14

  • 1[1]A J Bell,T J Sejnowski.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7(6): 1129-1159. 被引量:1
  • 2[2]T W Lee,et al.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J].Neural Computation,1999,11(2): 409-433. 被引量:1
  • 3[3]A Hyvarinen,et al.A fast fixed-point algorithm for independent analysis [J].Neural Computation,1997,9: 1483-1492. 被引量:1
  • 4[4]Linsker R.An application of the principle of maximum information preservation to linear systems [A].Touretzky D S.Advances in Neural Information Processing System 1 [C].Morgan-Kauffman,1989. 被引量:1
  • 5[5]Amari.Natural gradient works efficiently in learning [J].Neural Computation,1998,10: 251-276. 被引量:1
  • 6Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995, 7 (6): 1004-1159. 被引量:1
  • 7Lee T W. Independent component analysis using an extended infomax algorithm for mixed subgaussion and supergaussion sources[J]. Neural Computation, 1999, (11): 417-441. 被引量:1
  • 8Amri S, Cichocki A. Adaptive blind signal processing--neural network approaches[J]. Proceedings of the IEEE, 1998, 86(10):2026-2046. 被引量:1
  • 9Cichocki A. On-lone adaptive algorithms in nonstationary environments using a modified conjugate gradient approach[A]. In:Proc. IEEE Workshop Neural Networks for Signal Processing[C].1997, 316-325. 被引量:1
  • 10Amari S. Stability analysis of adaptive blind source separation[J].Neural Network, 1997, 10 (8): 1345-1351. 被引量:1

共引文献27

同被引文献51

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部