期刊文献+

一种峭度宽松开关盲分离算法 被引量:3

A New Kurtosis Loose Switching Algorithms for Blind Source Separation
下载PDF
导出
摘要 该文在盲分离开关算法的基础上提出一种峭度宽松开关算法。该算法用峭度作为激活函数中的开关量分析随机变量的高斯性,解决了原开关算法中衡量参数的不稳健性。该算法与盲分离开关算法和扩展的Infomax算法的仿真实验比较表明,新算法具有更好的分离效果和抗噪声能力。 This paper presents a new kurtosis loose switching algorithm (KLSA) based on the blind source separation switching algorithm. The algorithm directly uses kurtosis as a switching variable of the activation function to analyze the Gaussianity of random variables and it can solve the problem that the measurement parameter of the switch algorithm is not robust. Compared the performance of the new algorithm with the performance of BSS switching algorithm and extended Infomax ICA algorithm, the simulation results show that the new algorithm can get the better separation performance and anti - noise ability.
出处 《杭州电子科技大学学报(自然科学版)》 2007年第1期33-37,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 盲分离 峭度 开关算法 blind source separation (BSS) kurtosis switching algorithm
  • 相关文献

参考文献9

  • 1Comon P. Independent component analysis[ J]. A new concept Signal Processing, 1994,36(3) :287 - 314. 被引量:1
  • 2Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7(6) : 1004 - 1159. 被引量:1
  • 3Lee T W. Independent component analysis using an extended infomax algorithm for sub - Gaussian and super - Gaussian sources[J]. Neural Computation, 1999,11(2):409-433. 被引量:1
  • 4牛龙,马建仓,王毅,陈海洋.一种新的基于峰度的盲源分离开关算法[J].系统仿真学报,2005,17(1):185-188. 被引量:20
  • 5杨行峻,郑君里编著..人工神经网络与盲信号处理[M].北京:清华大学出版社,2003:399.
  • 6Amri S, Cichocki A. Adaptive blind signal processing-neural network approach[J]. Proceedings of the IEEE, 1998,86(10):2026-2046. 被引量:1
  • 7Cichocki A, Karhunen J, Kasprzak W, et al. Neural networks for blind separation with unknown number of sources[J]. Neurocomputing, 1999, 24(8): 55 - 93. 被引量:1
  • 8张新成,杜志勇,周俊青.盲源分离技术及其应用[J].电声技术,2004,28(4):4-6. 被引量:10
  • 9杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.

二级参考文献14

  • 1Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995, 7 (6): 1004-1159. 被引量:1
  • 2Lee T W. Independent component analysis using an extended infomax algorithm for mixed subgaussion and supergaussion sources[J]. Neural Computation, 1999, (11): 417-441. 被引量:1
  • 3Amri S, Cichocki A. Adaptive blind signal processing--neural network approaches[J]. Proceedings of the IEEE, 1998, 86(10):2026-2046. 被引量:1
  • 4Cichocki A. On-lone adaptive algorithms in nonstationary environments using a modified conjugate gradient approach[A]. In:Proc. IEEE Workshop Neural Networks for Signal Processing[C].1997, 316-325. 被引量:1
  • 5Amari S. Stability analysis of adaptive blind source separation[J].Neural Network, 1997, 10 (8): 1345-1351. 被引量:1
  • 6Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994, 36:287-314. 被引量:1
  • 7Amari S, Cardoso. Blind source separation--semi-parametric statistical approach[J]. IEEE Trans. on Signal Processing, Dec. 1997,45(11): 2692-2700. 被引量:1
  • 8Girolami M. An alternative perspective on adaptive independent component analysis algorithms[J]. Neural Computation, 1998, 10:2103-2114. 被引量:1
  • 9Comon P. Independent Component Analysis, A New Concept. Signal Processing, 1994,36:287-314. 被引量:1
  • 10Bell AJ, Sejnowske TJ. An Information Maximization Approach to Blind Separation and Blind Deconvolution.Neural Computation, 1995, (7): 1129-1159. 被引量:1

共引文献28

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部