期刊文献+

基于复contourlet域隐马尔科夫树模型的海面溢油合成孔径雷达图像相干斑抑制 被引量:1

Marine spill oil SAR images despeckling based on hidden Markov tree model in complex contourlet domain
下载PDF
导出
摘要 海面溢油SAR图像中的相干斑噪声严重影响了后续的图像分割、特征提取和分类。为了更有效地抑制海面溢油SAR图像相干斑,文中提出了一种基于复contourlet域隐马尔科夫树模型的海面溢油SAR图像相干斑抑制方法。首先对观测图像取对数并进行复contourlet变换;然后在复contour-let域中用隐马尔科夫树模型对相邻尺度间的带通方向子带系数进行建模,并依据贝叶斯最小均方误差准则估计无噪系数;最后进行逆复contourlet变换和指数变换,得到相干斑抑制后的图像。大量实验结果表明,与Lee、Kuan、Frost及Gamma Map等4种经典滤波方法以及小波域和contourlet域隐马尔科夫树模型方法相比,文中方法从主观视觉和客观定量评价两方面来看综合性能更为优越,是一种行之有效的SAR遥感图像海面溢油检测的预处理方法。 The presence of speckle noise in the marine spill oil SAR images seriously affects the follow--up image segmentation, feature extraction and classification. To suppress the speckle in the marine spill oil SAR images more effectively, a method of reducing the speckle noise in the marine spill oil SAR images based on the hidden Markov tree model in complex Contourlet transform domain is proposed in this paper, firstly, the observed image is taken the logarithm and the complex contourlet transform is performed. Then the hidden Markov tree model is adopted to a model the band pass directional subband coefficients between adjacent scales in complex contourlet domain. Moreover, the denoised coefficients are estimated according to Bayes minimum mean square error criterion. Finally, the inverse complex contourlet transform and the exponential transform are performed to obtain the despeckled image. A large number of experimental results show that, compared with four classical filtering methods such as Lee filter, Kuan filter, Frost filter and Gamma Map filter, and the methods based on the hidden Markov tree model in wavelet or contourlet transform domain, the proposed method in this paper has superior comprehensive performance according to subiective visual and objective quantitative evaluation. It is an effective preprocessing method of marine spill oil detection based on SAR remote sensing images.
出处 《海洋学报》 CAS CSCD 北大核心 2013年第2期168-177,共10页
基金 国家海洋局北海分局海洋溢油鉴别与损害评估技术国家海洋局重点实验室开放基金资助项目(201112) 水声通信与海洋信息技术教育部重点实验室(厦门大学)开放基金资助课题(201101) 中国科学院海洋研究所海洋环流与波动中国科学院重点实验室开放基金课题(KLOCAW1110) 国家自然科学基金资助项目(60872065)
关键词 海面溢油检测 合成孔径雷达图像 相干斑抑制 复contourlet变换 隐马尔科夫树模型 贝叶斯估计 marine spill oil SAR image despeckling complex contourlet transform hidden markov tree model bayesian estimation
  • 相关文献

参考文献23

  • 1WANG Guiwu ZHANG Yuanzhi LIN Hui.A study of oil spill detection using ASAR images[J].Acta Oceanologica Sinica,2009,28(4):32-37. 被引量:8
  • 2Lu J. Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia[J]. International Journal of Remote Sensing,2003,24(15): 3013-3032. 被引量:1
  • 3邹亚荣,梁超,陈江麟,崔松雪,郎姝燕.基于SAR的海上溢油监测最佳探测参数分析[J].海洋学报,2011,33(1):36-44. 被引量:18
  • 4Michele Vespe,Harm Greidanus. SAR image quality assessment and indicators for vessel and oil spil detection[J]. IEEE Transactions on Geoscienceand Remote sensing, 2012,50(11): 4726 —4734. 被引量:1
  • 5Fanny G A, Grgoire M, Fabrice C,et al. Operational oil-slick characterization by SAR imagery and synergistic data[J]. IEEE Journal of OceanicEngineering, 2005,30(3) : 487 — 495. 被引量:1
  • 6Migliaccio M, Gambardella A,Tranfaglia M. SAR polarimetry to observe oil spills[J]. IEEE Transactions on Geoscience and Remote Sensing,2007, 45(2): 506 — 511. 被引量:1
  • 7Sol berg A H S.Bbrekke C. Oil spill detection in Radarsat and Envisat SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing.2007,45(3): 746-755. 被引量:1
  • 8Brekke C,Solbergb A H S. Oil spill detection by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 95(1) : 1 — 13. 被引量:1
  • 9Francesco Bandiera,Giuseppe Ricci. Slicks detection on the sea surface based upon polarimetric SAR data[J], IEEE Geosciences and Remote Sens-ing Letters,2005,2(3): 342 — 346. 被引量:1
  • 10Fabio Del Frate, Andrea Petrocchi,Juerg Lichtenegger, et al. Neural networks for oil spill detection using ERS— SAR data[J]. IEEE Transac-tions on Geoscience and Remote Sensing,2000, 38(5) : 2282—2287. 被引量:1

二级参考文献57

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2赵侠,王正明.SAR图像相干斑抑制和特征增强的自适应正则化变分方法[J].红外与毫米波学报,2007,26(2):112-116. 被引量:7
  • 3Hua X, Pierce L E , Ulaby F T, Statistical properties of logarithmically transformed speckle [ J ]. IEEE Transaction on Geoscience and Remote Sensing, 2002,40 ( 3 ) : 721-727. 被引量:1
  • 4Min D, Cheng P, Chan A K, et al. Bayesian wavelet shrinkage with edge detection for SAR image despeckling [J]. IEEE Transaction on Geoscience and Remote Sensing, 2004,42(8) : 1642-1648. 被引量:1
  • 5Foucher S, Benie G B, Boucher J M. Muhiscale MAP filtering of SAR images [ J ]. IEEE Transaction on Image Processing,2001,10( 1 ) :49-60. 被引量:1
  • 6Argenti F, Alparone L. Speckle removal from SAR images in the undecimated wavelet domain [ J ]. IEEE Transaction on Geoscience and Remote Sensing, 2002,40 ( 11 ) : 2363-2374. 被引量:1
  • 7Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling[ J]. IEEE Transaction on Geoscience and Remote Sensing ,2003,41 ( 8 ) : 1773-1784. 被引量:1
  • 8Do M N, Vetterli M. Contourlets: a new directional multiresolution image representation [ C ]. Signals, Systems and Computers, Conference Record of the Thirty-Sixth Asilomar Conference, 2002,1,3-6. 被引量:1
  • 9Po D D-Y, Do M N. Directional multiscale modeling of image using the contourlet transform[ J]. IEEE Transactions on Image Processing,2006,15 ( 6 ) : 1610-1620. 被引量:1
  • 10Camilla Brekkea,Solbergb A H S.2005.Oil spill detection by satellite remote sensing.Remote Sensing of Environmentv 95,1-13. 被引量:1

共引文献51

同被引文献14

  • 1倪伟,郭宝龙,杨镠.图像多尺度几何分析新进展:Contourlet[J].计算机科学,2006,33(2):234-236. 被引量:20
  • 2易文娟,郁梅,蒋刚毅.Contourlet:一种有效的方向多尺度变换分析方法[J].计算机应用研究,2006,23(9):18-22. 被引量:32
  • 3DO M, VETYERLI M. The Contourlet transform: an efficient direc- tional muhiresolutian image representation [ J]. IEEE Transactions on Image Processing, 2003, 14( 12): 2091 -2016. 被引量:1
  • 4KINGSBURY N. Image processing with complex wavelets [ J]. Phil- osophical Transactions of the Royal Society of London: Series A, 1999, 357(1760) : 2543 -2560. 被引量:1
  • 5SELESNICK I W, BARANIUK R G, KINGSBURY N. The dual tree complex wavelet transform[ J]. IEEE Signal Processing Maga- zine, 2005, 22(6) : 123 - 151. 被引量:1
  • 6AI-AZZAWI N, SAKIM H A M, WAN ABDULLAH A K, et al. Medical image fusion scheme using complex Contourlet transform based on PCA[ C]// Proceedings of the 2009 IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2009: 5813- 5816. 被引量:1
  • 7ZHANG J W, ZHANG R P, DONG M, et al. A complex Contourlet transform and its HMT model for denoising and texture retrieval [ C]//Proceedings of the 2012 IEEE 1 lth International Conference on Signal Processing. Piscataway: IEEE, 2012, 2:833 -837. 被引量:1
  • 8SELESNICK I W. Hilbert transform pairs of wavelet bases [ J]. IEEE Signal Processing Letters, 2001, 8(6) : 170 - 173. 被引量:1
  • 9NGUYEN T T, ORAINTARA S. The shiftable complex directional pyramid-Part I: theoretical aspects [ J]. IEEE Transactions on Sig- nal Processing, 2008, 56(10) : 4651 - 4660. 被引量:1
  • 10NGUYEN T T, ORAINTARA S. The shiftable complex directional pyramid-Part II: implementation and applications[ J]. IEEE Trans- actions on Signal Processing, 2008, 56(10): 4661-4672. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部