期刊文献+

基于盲源分离的旋转机械干扰消除技术研究 被引量:16

Study on the Technique for Interference Removal Based on Blind Sources Separation
下载PDF
导出
摘要 实际工厂环境中 ,用于状态监测与故障诊断的信号检测传感器 ,其所采集的机器信号 (振动或声音 )中 ,不可避免地混杂有来自于相邻设备以及周围环境的干扰 ,这对于机器健康状态的准确监测是很不利的。这里研究利用盲源分离技术分离(去除 )这些无用的外来干扰 ,以提高故障诊断的准确性。盲源分离是一个很独特的盲信号分析与处理工具 ,在机械设备监测与诊断领域有着很好的应用前景。仿真实验以及现实世界的声源信号分离实验结果 。 In an actual factory, there exist inevitably a lot of interference from neighbor machines and noises from surroundings in measurements by the sensors used in condition monitoring and fault diagnosis, which is disadvantageous for accurately diagnostic implementation of a machine. Blind sources separation, a special tool for analyzing and processing signals blindly, which is promising in condition monitoring and fault diagnosis of machinery, is used in flaking off these useless interference. The validity of BSS, in interference removal, is verfied by some simulations and the result of separating mechanically acoustical signal from real world.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第3期368-371,共4页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金 ( 5 0 2 0 5 0 2 5 ) 浙江省自然科学基金 ( 5 0 0 10 0 4)资助项目
关键词 盲源分离 旋转机械 状态监测 故障诊断 卷积混叠 干扰 仿真 Blind sources separation Interference removal Convolutive mixtures
  • 相关文献

参考文献12

  • 1G.Gelle, M.Colas, G.Delaunay. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis. Mechanical Systems and Signal Processing (2000),14(3), 427-442. 被引量:1
  • 2R. H. Lyon. Machinery noise and diagnostics. Butterworths, Boston, 1987. 被引量:2
  • 3Alexander Ypma, Amir Leshem, Robert P. W. Duin. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures. Neurocomputing-Special Issue on ICA/BSS, 2002. 被引量:2
  • 4P. Comon. Independent component analysis, A new concept?. Signal Processing, 1994, 36: 287-314. 被引量:2
  • 5S. Van Gerven, D. Van Copernolle. Signal separation by symmetric adaptive decorrelation: Stability, convergence and uniqueness. IEEE Transaction on Signal Processing, 1995, 43. 被引量:2
  • 6Cardoso J.F., Beate Hvam Laheld. Equivariant adaptive source separation. IEEE Transaction on Signal Processing, 1996, 44(12). 被引量:1
  • 7Hoang-Lan Nguyen Thi, Christian Jutten. Blind source separation for convolutive mixtures. Signal Processing, 1995, 45: 209-229. 被引量:1
  • 8J.Porrill, J. V. Stone, J. Berwick, J. Mayhew, P. Coffey. Analysis of optical imaging data using weak models and ICA. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks(ICANN). 被引量:1
  • 9R. Vigario, J. Sarela, E. Oja. Searching for independence in electro-magnetic brain waves. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN). 被引量:1
  • 10L. K. Hansen. Blind separation of noisy image mixtures. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN). 被引量:1

共引文献1

同被引文献186

引证文献16

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部