期刊文献+

基于形态滤波和独立分量分析的轴承故障盲分离 被引量:7

Blind separation for bearing faults based on morphological filters and ICA
下载PDF
导出
摘要 针对独立分量分析(ICA)对噪声较为敏感及滚动轴承故障信号的调制特性,提出一种基于形态滤波与ICA相结合的方法。该方法首先对观测信号进行形态滤波以突出故障特征同时消除其他干扰源,然后应用ICA分离形态滤波后信号。对滚动轴承外圈内圈复合故障信号进行实验研究,结果表明该方法能够有效识别分离滚动轴承故障特征。 A method based on morphological filtering and independent component analysis(ICA)was proposed to deal with the problem that ICA is sensitive to noise.The morphological filtering technique was used to extract modulation features embedded in the observed signals and remove the sources of disturbance,and then ICA was used to separate source signals from filtered observed signals.The method was applied to analyze the combined failure of out ring and inner ring of rolling bearing.Analysis results show that this method can identify the rolling bearing's fault characteristic efficiently.
出处 《电子测量技术》 2010年第9期101-103,113,共4页 Electronic Measurement Technology
基金 国家自然科学基金资助项目(50805071) 云南省教育厅科学研究基金资助项目(08J0009)
关键词 形态滤波 独立分量分析 故障诊断 滚动轴承 morphological filtering independent component analysis fault diagnosis rolling bearing
  • 相关文献

参考文献8

  • 1胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 2焦卫东,杨世锡,吴昭同.基于盲源分离的旋转机械干扰消除技术研究[J].仪器仪表学报,2004,25(3):368-371. 被引量:16
  • 3ANTONI J,RANDALL R.The spectral kurtosis:application to the vibratory surveillance and diagnostics of rotating machines[J].Mechanical Systems and Signal Processing,2006,20(2).308-331. 被引量:1
  • 4SERRA J.morphological filtering:an overview[J].Signal processing,1994,38(1):3-11. 被引量:1
  • 5HYVRINEN A,HURRI J,HOYER P.Independent component analysis[J].Natural Image Statistics:151-175. 被引量:1
  • 6BINGHAM E,HYVARINEN A.A fast fixed point algorithm for independent component analysis of complex valued signals[J].International Journal of Neural Systems,2000.10(1):1-8. 被引量:1
  • 7钟秉林,黄仁主编..机械故障诊断学[M].北京:机械工业出版社,1997:189.
  • 8沈路 周晓军 张文斌 等.基于形态滤波与灰色关联度的滚动轴承故障诊断.振动与冲击,2009,(11):25-28. 被引量:10

二级参考文献15

  • 1G.Gelle, M.Colas, G.Delaunay. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis. Mechanical Systems and Signal Processing (2000),14(3), 427-442. 被引量:1
  • 2R. H. Lyon. Machinery noise and diagnostics. Butterworths, Boston, 1987. 被引量:2
  • 3Alexander Ypma, Amir Leshem, Robert P. W. Duin. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures. Neurocomputing-Special Issue on ICA/BSS, 2002. 被引量:2
  • 4P. Comon. Independent component analysis, A new concept?. Signal Processing, 1994, 36: 287-314. 被引量:2
  • 5S. Van Gerven, D. Van Copernolle. Signal separation by symmetric adaptive decorrelation: Stability, convergence and uniqueness. IEEE Transaction on Signal Processing, 1995, 43. 被引量:2
  • 6Cardoso J.F., Beate Hvam Laheld. Equivariant adaptive source separation. IEEE Transaction on Signal Processing, 1996, 44(12). 被引量:1
  • 7Hoang-Lan Nguyen Thi, Christian Jutten. Blind source separation for convolutive mixtures. Signal Processing, 1995, 45: 209-229. 被引量:1
  • 8J.Porrill, J. V. Stone, J. Berwick, J. Mayhew, P. Coffey. Analysis of optical imaging data using weak models and ICA. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks(ICANN). 被引量:1
  • 9R. Vigario, J. Sarela, E. Oja. Searching for independence in electro-magnetic brain waves. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN). 被引量:1
  • 10L. K. Hansen. Blind separation of noisy image mixtures. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN). 被引量:1

共引文献68

同被引文献86

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部