期刊文献+

鲁棒的极大熵聚类算法RMEC及其例外点标识 被引量:12

Robust Maximum Entropy Clustering Algorithm RMEC and Its Outlier Labeling
下载PDF
导出
摘要 针对极大熵聚类算法MEC (maximumentropyclustering)对例外点 (outliers)较敏感和不能标识例外点的缺陷 ,提出了一种改进的极大熵聚类算法RMEC (robustmaximumentropyclustering)。该算法的基本思想是通过引入Vapnik’sε-不敏感损失函数和权重因子重新构建目标函数 ,并利用优化理论推导出新的学习公式。RMEC算法不但对例外点较之MEC算法有更好的鲁棒性 ,而且还能有效地利用学习后的权重因子标识出数据集中存在的例外点。 In this paper, the novel robust maximum entropy clustering algorithm RMEC, as the improved version of the maximum entropy algorithm MEC, is presented to overcome its drawbacks: very sensitive to outliers and uneasy to label them. With the introduction of Vapnik's ε-insensitive loss function and the new weight factors, the new objective function is re-constructed, and consequently, its new update rules are derived according to the Lagrangian optimization theory. Compared with algorithm MEC, the main contributions of algorithm RMEC exist in its much better robustness for outliers and the fact that it can effectively label outliers in the dataset using the obtained weight factors. The experimental results demonstrate its superior performance in enhancing the robustness and labeling outliers in the dataset.
出处 《中国工程科学》 2004年第9期38-45,共8页 Strategic Study of CAE
基金 国家自然科学基金资助项目 ( 60 2 2 5 0 15 ) 江苏省自然科学基金资助项目 (BK2 0 0 3 0 17) 江苏计算机信息技术重点实验室资助
关键词 聚类 鲁棒性 例外点 Ε-不敏感损失函数 权重因子 entropy clustering robustness outliers ε-insensitive loss function weight factors
  • 相关文献

参考文献14

  • 1Rose K, Gurewtiz E, Fox G. A deterministic annealing approach toclustering [J]. Pattern Recognition Letters, 1990, 11: 589~ 594 被引量:1
  • 2邓赵红,陆介平,王士同.改进的模糊Min-Max神经网络与模糊系统建模[J].江南大学学报(自然科学版),2003,2(3):234-239. 被引量:3
  • 3Keller A. Fuzzy clustering with outliers [A].NAFIPS00 [M]. 2000 被引量:1
  • 4Karayiannis N B. MECA: maximum entropy clustering algorithm [ A]. Proc on IEEE Int Conf on Fuzzy Syst [C]. Orlando, F L, 1994. 630~635 被引量:1
  • 5Li R P, Mukaidono M. A maximum entropy approach to fuzzy clustering [A]. Proc on IEEE Iht Conf Fuzzy Syst[C]. Yokohama, Japan, 1995. 2227~2232 被引量:1
  • 6张志华,郑南宁,史罡.极大熵聚类算法及其全局收敛性分析[J].中国科学(E辑),2001,31(1):59-70. 被引量:27
  • 7Las M, Kandel A. Automated perceptions in data mining [A]. Proceedings of the Eighth InternationalConference on Fuzzy System [ C]. Seoul, Korea,1999. 190~ 197 被引量:1
  • 8Mendenhall W, Reinmuth J E, Beaver R J, Statistics for management and economics [ M]. Belmont, C A:Duxbury Press, 1993 被引量:1
  • 9Huber P J, Robust statistics [ M]. New York: Wiley,1981 被引量:1
  • 10Gill P E, Murray W. Wright M H, Practical Optimization [ M]. New York: Academic Press, 1981 被引量:1

二级参考文献3

共引文献28

同被引文献127

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部