期刊文献+

发挥优良传统 增强大局观念

原文传递
导出
作者 陈仁达
出处 《理论学习(浙江)》 2000年第2期23-24,共2页
  • 相关文献

参考文献2

二级参考文献33

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2Sun S L. A survey of multi-view machine learning[J]. Neural Computing and Applications, 2013, 23(7/8): 2031 -2038. 被引量:1
  • 3Li G, Chang K, Hoi S C H. Multi-view semi-supervised learning with consensus[J]. IEEE Trans on Knowledge and Data Engineering, 2012, 24(11): 2040-2051. 被引量:1
  • 4Sun S L. Multi-view Laplacian support vector machines[C]. Proc of the 7th Int Conf on ADMA. Berlin: Springer, 2011: 209-222. 被引量:1
  • 5Zhang Q, Sun S. Multiple-view multiple-learner active learning[J]. Pattern Recognition, 2010, 43(9): 3113-3119. 被引量:1
  • 6Li G, Hoi S C H, Chang K. Two-view transductive support vector machines[C]. Proc of the SIAM Int Conf on Data Mining. Columbus, 2010: 235-244. 被引量:1
  • 7Sun S L, Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions[J]. J of Machine Learning Research, 2010, 11(9): 2423-2455. 被引量:1
  • 8Farquhar J, Hardoon D, Meng H, et al. Two view learning: SVM-2K, theory and practice[C]. Proc of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2005: 355-362. 被引量:1
  • 9Sindhwani V, Niyogi P, Belkin M. A co-regularization approach to semi-supervised learning with multiple views[C]. Proc of the ICML 2005 Workshop on Learning With Multiple Views. Bonn, 2005: 74-79. 被引量:1
  • 10Ando R K, Zhang T. Two-view feature generation model for semi-supervised learning[C]. Proc of the 24th Int Conf on Machine Learning. Corvallis, 2007: 25-32. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部