期刊文献+

基于划分融合与视角加权的极大熵聚类算法 被引量:3

Maximum Entropy Clustering Algorithm Based on Partition Fusion and View-weighting
下载PDF
导出
摘要 针对极大熵聚类算法在处理多视角聚类任务时存在的局限性,引入划分融合和视角加权技术,提出一种改进的极大熵聚类算法。通过对视角分配权重体现其重要程度,在此基础上对每个视角进行单独划分,利用融合权重矩阵实现视角划分的融合,并采用新的集成策略得到全局聚类结果。在人工数据集和UCI数据集上的实验结果表明,与极大熵聚类算法、基于多任务的组合K-means算法等相比,该算法具有更好的多视角聚类性能。 Aiming at the limitation to effectively realize the view fusion in the multi-view clustering task for Maximum Entropy Clustering ( MEC), this paper proposes an improved view-weighting MEC algorithm by introducing partition fusion and view-weighting. This method assigns a weight of each view to show the importance of each view. And it sets the partition matrix of each view, and the view-fusion in each view partition is made by a view-fusion weighting matrix, Finally,it proposes a new integration strategy to obtain the global partition result. Experimental results on synthetic datasets and UCI datasets show that the proposed algorithm outperforms MEC algorithm and CombKM algorithm in dealing with multi-view clustering task.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第4期184-189,196,共7页 Computer Engineering
基金 国家自然科学基金资助面上项目(61170122) 江苏省杰出青年基金资助项目(BK20140001) 新世纪优秀人才支持计划基金资助项目(NCET120882)
关键词 极大熵聚类 多视角聚类 划分融合 视角加权 权重矩阵 Maximum Entropy Clustering (MEC) multi-view clustering partition fusion view-weighting weight matrix
  • 相关文献

参考文献15

  • 1Rose K,Gurewitz E, Fox G. A Deterministic Annealing Approach to Clustering[J]. Pattern Recognition Letters, 1990,11 ( 9 ) :589-594. 被引量:1
  • 2Karayiannis N B. MECA: Maximum Entropy Clustering Algorithm [ C]//Proceedings of IEEE International Conference on Fuzzy System. Washington D. C., USA: IEEE Press, 1994:630-635. 被引量:1
  • 3Li R P, Mukaidono M. A Maximum Entropy Approach to Fuzzy Clustering [C ]//Proceedings of IEEE International Conference on Fuzzy System. Washington D. C. , USA: IEEE Press ,1995:2227-2232. 被引量:1
  • 4张志华,郑南宁,史罡.极大熵聚类算法及其全局收敛性分析[J].中国科学(E辑),2001,31(1):59-70. 被引量:27
  • 5邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 6Asur S, Ucar D, Parthasarathy S. An Ensemble Framework for Clustering Protein-protein Interaction Networks[ J]. Bioinformatics ,2007,23 ( 13 ) :29-40. 被引量:1
  • 7Wang Hongjun, Shan Hanhuai, Banerjee A. Bayesian Cluster Ensembles [ J ]. Statistical Analysis and Data Mining:The ASA Data Science Journal, 2011 , 4 ( 1 ) : 54-70. 被引量:1
  • 8Gu Quanquan,Zhou Jie. Learning the Shared Subspace for Multi-task Clustering and Transductive Transfer Classification [ C ]//Proceedings of the 9th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press ,2009:159-168. 被引量:1
  • 9Gu Quanquan,Zhou Jie. Co-clustering on Manifolds[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA :ACM Press ,2009:359-368. 被引量:1
  • 10Zangwill W I. Convergence Conditions for Nonlinear Programming Algorithms [ J]. Management Science, 1969,16(1 ) :1-13. 被引量:1

二级参考文献16

  • 1李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 2Rose K, Gurewtiz E, Fox G. A deterministic annealing approach toclustering [J]. Pattern Recognition Letters, 1990, 11: 589~ 594 被引量:1
  • 3Keller A. Fuzzy clustering with outliers [A].NAFIPS00 [M]. 2000 被引量:1
  • 4Karayiannis N B. MECA: maximum entropy clustering algorithm [ A]. Proc on IEEE Int Conf on Fuzzy Syst [C]. Orlando, F L, 1994. 630~635 被引量:1
  • 5Li R P, Mukaidono M. A maximum entropy approach to fuzzy clustering [A]. Proc on IEEE Iht Conf Fuzzy Syst[C]. Yokohama, Japan, 1995. 2227~2232 被引量:1
  • 6Las M, Kandel A. Automated perceptions in data mining [A]. Proceedings of the Eighth InternationalConference on Fuzzy System [ C]. Seoul, Korea,1999. 190~ 197 被引量:1
  • 7Mendenhall W, Reinmuth J E, Beaver R J, Statistics for management and economics [ M]. Belmont, C A:Duxbury Press, 1993 被引量:1
  • 8Huber P J, Robust statistics [ M]. New York: Wiley,1981 被引量:1
  • 9Gill P E, Murray W. Wright M H, Practical Optimization [ M]. New York: Academic Press, 1981 被引量:1
  • 10Steve R G, Support vector machines classification and regression [R]. University of Southampton, 1998 被引量:1

共引文献37

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部