期刊文献+

基于改进的径向基函数神经网络的铁磁谐振系统混沌控制 被引量:8

Chaos control of ferroresonance system based on improved RBF neural network
原文传递
导出
摘要 面向中性点直接接地电力系统发生的铁磁谐振过电压所显现的混沌特性,在径向基函数神经网络的基础上,提出引进一种极大熵学习算法对该混沌系统进行控制.该方法通过最优化一个目标函数导出中心向量的学习规则,充分利用网络隐层的聚类功能,极大改善网络的回归和学习能力.对具体的铁磁谐振系统的数值实验证实了该方法在针对铁磁谐振过电压混沌控制中的有效性和可行性. Facing to the ferroresonance over voltage of neutral grounded power system, an improved learning algorithm based on RBF neural networks is used to control the chaos system. The algorithm optimizes the object function to derive learning rule of central vectors, and uses the clustering function of network hidden layers. It improves the regression and learning ability of neural networks. The academic derivation testifies the errors and precision could satisfy demand of chaos control. And simulation calculation also displayed that the rate of convergence of the improved RBF neural network is much quickly and approach ability is much stronger. The numerical experimentation of ferroresonance system testifies the reliability and stability of using the algorithm to control chaos in neutral grounded power system.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第11期5714-5720,共7页 Acta Physica Sinica
关键词 中性点直接接地系统 混沌控制 径向基函数 极大熵原理 neutral grounded power system, chaos control, radial basis function, maximum-entropy principle
  • 相关文献

参考文献14

二级参考文献62

共引文献361

同被引文献83

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部