期刊文献+

一种方向Gabor滤波纹理分割算法 被引量:26

A Texture Segmentation Algorithm Based on Directional Gabor Filters
下载PDF
导出
摘要 结合人眼视觉特性,设计了一种方向Gabor滤波器,该滤波器顾及了纹理图像的方向特性;利用Gabor滤波器的带通技术,抑制次要纹理图像的主频率分量,增强目标纹理图像主频率分量,使滤波输出图像具有较大的类间离散度和较小的类内离散度,将纹理图像的分割转化为传统的图像分割,使图像的分割质量和算法效率都得到了提高。 This paper presents a texture segmentation algorithm based on directional Gabor filters when orientation characteristics of textures are taken into account. Incorporating into the human visual characteristics, a design approach of optimal directional Gabor filters is proposed. Each texture can be thought of as containing a narrow range of frequency and orientation components, By filtering an input texture image with Gabor filters tuned to the dominant frequency and orientation component of the textures, it is possible to locate each texture. The magnitude of the channel ouput should be large when the texture exhibits the frequency and orientation characteristics to which the channel' s Gabor filter is tuned, vice versa. There are weak intraclass dispersion and strong interclass dispersion in the filtered image, and the issue of texture segmentation is translated into that of traditional image segmentation. Experimental results indicate that the proposed algorithm outperforms conventional approaches in terms of both objective measurements and visual evaluation.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第4期504-510,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(40471088 40523005) 国家"973"计划项目(2003CB415205)
关键词 纹理分割 GABOR滤波器 人眼视觉特性 texture segmentation, Gabor filters, human visual characteristics
  • 相关文献

参考文献16

  • 1Clausi D A.An analysis of co-occurrence texture statistics as a function of grey local level quantization[J].Canadian Journal of remote sensing,2002,28 (1):45 ~ 62. 被引量:1
  • 2王东峰,邹谋炎.傅氏变换的自配准性质及其在纹理识别和图象分割中的应用[J].中国图象图形学报(A辑),2003,8(2):140-146. 被引量:20
  • 3Jain A,Healey G.A multiscale representation including opponent color features for texture recognition[J].IEEE Transactions on Image Processing,1998,7(1):124~128. 被引量:1
  • 4Shi M H,Healey G Hyperspectral texture recognition using a multiscale opponent representation[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(5):1090 ~2668. 被引量:1
  • 5盛文,夏斌.基于Gabor环滤波的纹理分割方法[J].红外与激光工程,2003,32(5):484-488. 被引量:19
  • 6陆丽珍,刘仁义,刘南.一种融合颜色和纹理特征的遥感图像检索方法[J].中国图象图形学报(A辑),2004,9(3):328-333. 被引量:37
  • 7Jain A K,Bhattacharjee S.Text segmentation using Gabor filters for automatic document processing[J].Machine Vision and Application,1992,5(3):169 ~184. 被引量:1
  • 8Bovik A C,Clark M,Geisler W S.Multichannel texture analysis using localized spatial filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12 (1):55 ~ 73. 被引量:1
  • 9Weldon T P,Higgins W E.Multiscale Rician approach to Gabor filter design for texture segmentation[A].In:Proceedings of the IEEE International Conference on Image Processing(2)[C],Austin,TX,USA,1994:620~624. 被引量:1
  • 10Dunn D,Higgins W E.Optimal Gabor filters for texture segmentation[J].IEEE Transactions on Image Processing,1995,4(7):947 ~964. 被引量:1

二级参考文献23

  • 1Bovik M Clark, Geisler W S. Multichannel texture analysis using localized spatial filters[J]. IEEE Trans PAMI, 1990, 12(1) :55-73,. 被引量:1
  • 2Dunn F D, Higgins W E. Optimal Gabor filters for texture segmentation[J]. IEEE Trans IP, 1995, 4(7) :947-964. 被引量:1
  • 3Weldon T T, Higgins W E, Dunn F D. Efficient Gabor filter design for texture segmentation[J]. Pattern Recognition, 1996,29(12) : 2005-2015. 被引量:1
  • 4Field D J. Relations between the statistics of natural images and the response properties of cortical cells[J]. J Opt Soc Amer,1987, A4(12) :2a79-2a94. 被引量:1
  • 5Webster M A, Valois R L De, Relationship between spatial frequency and orientation tuning of striate cortex cells[J]. J OptSoc Am, 1985, A2(7):895-902. 被引量:1
  • 6Hu R,Signal Processing,1992年,26卷,285页 被引量:1
  • 7罗申菲尔特A 余英林(译).数字图像处理[M].北京:人民邮电出版社,1982.. 被引量:3
  • 8Dunn D,IEEE Transactions on PAMI,1994年,16卷,2期,130页 被引量:1
  • 9Niblack W, Jose S, Barber R, et al. The QBIC project:query images by content using color, texture and shape Proceeding of SPIE[C], San Joe, California, USA, 1993.1908:173-187. 被引量:1
  • 10Marques O, Furht B. MUSE: content-based image search and retrieval system using relevance feedback[J]. Multimedia Toolsand Applications, 2002, 17(4): 21-50. 被引量:1

共引文献478

同被引文献258

引证文献26

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部