期刊文献+

极大熵Relief特征加权 被引量:9

Maximum Entropy Relief Feature Weighting
下载PDF
导出
摘要 Relief特征加权的最新研究进展表明其可近似地表述为一个间距最大化优化问题.尽管该类算法广为应用,但仍然存在一些缺陷.为了提高Relief特征加权的适应性和鲁棒性,融合间距最大化和极大熵理论,并由此探讨了新的鲁棒的具有更好适应性的Relief特征加新方法.首先,构造了一个结合极大熵原理的间距最大化目标函数.对于该目标函数,运用优化理论得到一些重要的理论结果.在此基础上,对于两类数据、多类数据和在线数据,提出了一组鲁棒的Relief特征加权算法.利用UCI基准数据集和基因数据集进行了实验验证,结果表明提出的新Relief特征加权算法对噪音和例外点显示出了更好的适应性和鲁棒性. A latest advance in Relief feature weighting techniques is that it can be approximately expressed as a margin maximization problem and therefore its distinctive properties can be investigated with the help of the optimization theory.Although Relief feature has been widely used,it lacks a mechanism to deal with outlier data and how to enhance the robustness and the adjustability of the algorithm in noisy environments is still not very obvious.In order to enhance Relief's adjustability and robustness,by integrating maximum entropy technique into Relief feature weighting techniques,the more robust and adaptive Relief feature weighting new algorithms are investigated.First,a new margin-based objective function integrating maximum entropy is proposed within the optimization framework,where two maximum entropy terms are adopted to control the feature weights and sample force coefficients respectively.Then by applying optimization theory,some of useful theoretical results are derived from the proposed objective function and then a set of robust Relief feature weighting algorithms are developed for two-class data,multi-class data and online data.As demonstrated by extensive experiments in UCI benchmark datasets and gene expression datasets,the proposed new algorithms show the competitive performance to the state-of-the-art algorithms and much better robustness to datasets with noise and or outliers.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第6期1038-1048,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(90820002 60773206 60903100) 江苏省自然科学基金项目(BK2009067) 香港研究资助局基金项目(PolyU5145/05E PolyU5147/06E) 南京大学软件新技术国家重点实验室开放课题基金项目(A200602) 浙江大学CAD&CG国家重点实验室开放课题基金项目(A0802)
关键词 RELIEF算法 特征选择 特征加权 间距最大化原则 极大熵 Relief algorithm feature selection feature weighting margin maximization principle maximum entropy
  • 相关文献

参考文献18

  • 1Kohavi R, Sommerfield D, Dougherty J. Wrapper for feature subset selection [J]. Artificial Intelligence, 1997, 97 (1/2/ 3): 273-324. 被引量:1
  • 2Lee C, Landgrebe D. A. Feature extraction based on decision boundaries[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(4) : 388-400. 被引量:1
  • 3皋军,王士同,邓赵红.广义的势支撑特征选择方法GPSFM[J].计算机研究与发展,2009,46(1):41-51. 被引量:6
  • 4Peng Hanchuan, Long Fuhui, Ding Chris. Feature selection based on mutual information: Criteria of max-depenedency, max-relevance, and rain-redundancy [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (8) : 1226-1238. 被引量:1
  • 5Kira K, Rendell L A. A practical approach to feature selection [C]//Proc of the 9th Int Workshop on Machine Learning. San Francisco: Morgan Kaufmann, 1992:249-256. 被引量:1
  • 6Kononenko I. Estimating attributes: Analysis and extensions of RELIEF [C]//Proc of European Conf on Machine Learning. Berlin: Springer, 1994:171-182. 被引量:1
  • 7Robnik M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF [J]. Machine Learning, 2003, 53(1/2) : 23-69. 被引量:1
  • 8Sun Yijun. herative RELIEF for feature weighting: Algorithms, theories, and applications [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (6) : 1035-1051. 被引量:1
  • 9Gilad-Bachrach R, Navot A, Tishby N. Margin based feature selection-Theory and algorithms [C] //Proc of the 21st Int Conf on Machine Learning. New York: ACM, 2004, 337-344. 被引量:1
  • 10Karayiannis N B. MECA: Maximum entropy clustering algorithm [C] //Proc of the 3rd IEEE Int Conf on Fuzzy System. Piscataway, NJ: IEEE, 1994:630-635. 被引量:1

二级参考文献47

共引文献19

同被引文献84

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部