期刊文献+

适于癌基因表达数据集的新特征提取标准NFEC及其分类新算法研究 被引量:3

New feature - extraction criterion and classification algorithm for cancer gene expression datasets
下载PDF
导出
摘要 癌基因表达数据集具有小样本、高维数之特点,一般的机器学习机难以对其有效分类。因此,通常需要采用某些特征提取度量标准来进行降维处理。可是常用的一些特征提取度量标准亦会导致分类效果欠佳之问题。依据微分容量控制学习机DCCM,提出了一个新的特征提取度量标准NFEC,然后依据NFEC和DCCM,提出了适于癌基因表达数据集的特征提取算法DCCFE。实验表明,新的度量NFEC和新的特征提取算法DCCFE较之现有方法对癌基因表达数据集分类时更为有效。本文的工作意义在于:(1)提出了一个新的更有意义的特征提取度量标准;(2)DCCM可以采用比核函数更为一般的一阶可微函数,因而提出的新的特征提取算法更具普遍应用意义。 The classification accuracies for cancer gene expression datasets are often collapsed by using current classification criteria, due to their high dimensionality and too small sizes. In this paper, based on DCCM(Differential Capability Control Machine ), a new feature- extraction criterion NFEC is developed and a new feature- extraction algorithm DCCFE is accordingly proposed. Our experimental results demonstrate that the new feature - extraction criterion NFEC is better than current criteria, and the new algorithm DCCFE outperforms the current approaches for cancer gene expression datasets. Furthermore , since DCCM admits more general differential functions rather than kernel functions in SVM, Our approach here hints more potential application in bioinformatics.
出处 《生物信息学》 2004年第2期13-20,共8页 Chinese Journal of Bioinformatics
基金 国家自然科学基金(60225015) 江苏省自然科学基金(BK2003017) 中科院软件所计算机科学开放基因(SYSKF)
关键词 生物信息学 微分容量控制 特征提取 癌基因表达数据集 分类 bioinformatics differential capability control feature extraction cancer gene expression datasets classification
  • 相关文献

参考文献15

  • 1[1]T. R. Golub, D. K. Slonim, P. Tamayo et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene[J]. Science,1999,286:531~537. 被引量:1
  • 2[2]S. Ramaswamy, P. Tamayo, R. Rifkin et al. Multi-class Cancer Diagnosis Using Tumor Gene Expression Signatures[J] . PNAS,2001,98:15149~15154. 被引量:1
  • 3[3]P. Tamayo , S. Ramaswamy. Cancer Genomics and Molecular Pattern Recognition[A]. M. Ladanyi and W. Gerald (eds.).Expression profiling of human tumors: diagnostic and research applications[C]. Humana Press,2003. 被引量:1
  • 4[4]I. Guyon, J. Weston, S. Barnhill et al. Gene Selection for Cancer Classificaion Using Support Vector Machines[J]. Machine learning,2002,46:389~422. 被引量:1
  • 5[5]P. Tamayo, D. Slonim, J. Mesirov et al. Interpreting Gene expression with Self-organizing maps: Methods and Application to Hematopoeitic Differentiation[J]. Proc. Natl. Acad. Sci. USA 1999,96:2907~2912. 被引量:1
  • 6许建华,张学工,李衍达.一种基于核函数的非线性感知器算法[J].计算机学报,2002,25(7):689-695. 被引量:23
  • 7[7]J. H. Chen, C. S. Chen. Fuzzy Kernel Perceptron[J]. IEEE Trans. on Neural Networks,Networks,2002,13(6): 1364~1373. 被引量:1
  • 8张莉,周伟达,焦李成.基于微分容量控制的学习机[J].电子学报,2003,31(10):1526-1531. 被引量:2
  • 9[9]V. Vapnik . The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 10[10]V. Vapnik. Statistical Learning Theory[M]. New York: Wiley, 1998. 被引量:1

二级参考文献16

  • 1赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997.. 被引量:55
  • 2石卓尔 焦李成 保铮.子波神经网络[A]..中国神经网络1993学术大会论文集[C].西安:1993年中国神经网络学术会,1993.85-96. 被引量:1
  • 3Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York :Springer-Verlag, 1995. 被引量:1
  • 4Vapnik V. Statistical tearning Theory[M]. New York:John Wiley and Sons,Inc., 1998. 被引量:1
  • 5Vapnik V. An overview of statistical learning theory[J]. IEEE TRANS.Neural Networks, 1999,10(5) :988 - 999. 被引量:1
  • 6C J C Burges. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998,2 ( 2 ) : 1 - 47. 被引量:1
  • 7A Smola, B Scholkopf. A tutorial on support vector regression [ EB/OL]. NeuroCOLT, Rep. 19, 1998. Available http://svm. first. gmd.de. 被引量:1
  • 8C Saunders, et al. Support vector machine- - - reference manual[R]. Technical Report CSD-TR-98-03, Deprtment of Computer Science, Royal Holloway, University of London, Egham, UK, 1998. 被引量:1
  • 9T Evgeniou, M Pontil, T Poggio. Regularization networks and support vector machines[ A] .In A J Smola, P L Bartlett, B Sch? lkopf, and D Schuurmans, editors, Advances in Large Margin Classifiers [ C ].Cambridge, MA: MIT Press, 2000. 被引量:1
  • 10T Evgeniou, M Pontil, T Poggio. A unified framework of regularization networks and support vector machines[ R]. A I Memo No. 1654, Artificial Intelligence Laboratoty, Massachusetts Institute of Technology,1999. 被引量:1

共引文献22

同被引文献81

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部