摘要
将数学解题的认知过程和情绪过程相结合,利用波利亚四阶段理论划分认知过程,聚焦于解题过程中的情绪因素.研究结果表明,在理解阶段,常规题使学生产生积极情绪(如喜悦),非常规题产生消极情绪(如焦虑);在计划阶段,适当的焦虑促进数学问题解决,能否完成解题取决于认知和元认知;在执行阶段,消极情绪唤醒学生转变解题阶段,由执行阶段转到计划阶段或者理解阶段,最后寻求解题策略的转变,转向低层次认知策略;回顾阶段使学生产生积极情绪,促进相似数学问题解决,有意义的回顾阶段需要学生具备必要的知识、技能、元认知等特质.
This study aims to investigate the role of affect in mathematics problem-solving processes,which are divided by Polya into four stages,thereby incorporating cognitive and affective processes.The results showed some complicated patterns.In the understanding stage,routine problems caused positive emotions in the students,but nonroutine problems generated negative emotions.In the planning stage,an appropriate level of anxiety could promote mathematical problem solving.Whether mathematical problems could be solved depended on both cognitive and metacognitive factors.In the enactment stage,negative emotions aroused students to change their problem-solving tracks,from the enactment to the planning or the understanding stage,finally transforming problem-solving strategies to low-level cognitive strategies.In the evaluation stage,students usually felt positive emotions,which facilitated their use of similar mathematical problem-solving strategies in the future.Nevertheless,meaningful evaluation entailed students’characteristics such as knowledge,skills,and metacognition.
作者
付婉迪
尹弘飚
FU Wan-di;YIN Hong-biao(Faculty of Education,Chinese University of Hong Kong,Hong Kong 999077,China)
出处
《数学教育学报》
CSSCI
北大核心
2021年第6期1-7,共7页
Journal of Mathematics Education
基金
香港研究资助局一般项目资助--多元视角下中国大学生数学学习投入追踪研究(CUHK 14618118)。
关键词
情绪因素
数学问题解决
高中生
affects
mathematics problem-solving
senior high school students