期刊文献+

基于周期分割的睡眠自动分期研究 被引量:4

Research of Automatic Staging of Sleep Based on Period Segmentation
下载PDF
导出
摘要 为实现高效的自动睡眠分期,提出一种基于周期分割的时域信号处理方法,采用合并增减序列方法对三个通道多导睡眠图记录(2路脑电,1路眼电)进行周期分割,根据信号波形的周期标记睡眠各期的特征波形,提取特征波形在每一帧数据的时长占比与平均幅值作为特征。双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)作为分类器,解决传统机器学习方法无法利用睡眠数据时间上下文信息的缺点。对42 699个样本使用交叉验证方法得到了84.8%的平均准确率,实验结果表明合并增减序列方法可以降低脑电信号分析的复杂度,是一种有效的时域信号处理方法,双向长短时记忆网络可以有效提高睡眠分期准确率,具有良好的应用前景。 In order to achieve efficient automatic sleep staging, a time-domain sleep signal processing method based on the principle of period segmentation is proposed in this paper. Merger of Increasing and Decreasing Sequences(MIDS)is employed to segment the three-channel polysomnography records(2-channel electroencephalogram and 1-channel electrooculogram)periods, then the characteristic waveforms of each stage of sleep are marked according to the signal period,the proportion of the duration and the average amplitude of the feature waves are extracted as features. Bi-directional Long Short-Term Memory(Bi-LSTM)is used as a classifier to solve the shortcomings of traditional machine learning methods that can not utilize the temporal context information of sleep data. The average accuracy for 42 699 samples is 84.8% by cross-validation, and the merging sequence method can reduce the complexity of EEG signal analysis which is an effective time-domain signal processing method. Bidirectional LSTM neural network can effectively improve the accuracy of sleep staging, and has good application prospects.
作者 李同庆 邹俊忠 张见 王蓓 卫作臣 LI Tongqing;ZOU Junzhong;ZHANG Jian;WANG Bei;WEI Zuochen(Department of Automation,School of Information Science and Engineering,East China University of Science andTechnology,Shanghai 200237,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第9期94-99,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61773164) 上海市自然科学基金(No.16ZR1407500)
关键词 睡眠分期 周期分割 合并增减序列 深度学习 双向长短时记忆网络 sleep stage period segmentation merger increase and decrease sequence deep learning Bi-directional Long Short-Term Memory(Bi-LSTM)
  • 相关文献

参考文献5

二级参考文献27

  • 1刘建平,郑崇勋.多导睡眠图特征提取研究[J].生物医学工程学杂志,2005,22(5):906-909. 被引量:5
  • 2A Rechtschaffen,A Kales.A munual of Standardized Terminology,Techniques and Scoring System for Sleep Stages of Human Subject[M].Los Angeles:BIS/BRI,UCIA 1968.1-36. 被引量:1
  • 3Gao Xiaorong,Yang Fushen,Diao Yiming.Homotopic BP algorithm adopted Staged principle[C].Proceedings of 1993 International Joint Conference on Neural Networks.Oct.1993.1167-1170. 被引量:1
  • 4Mutapcic A, Shimayama T, Flores A. Automatic sleep stage classification using frequency analysis of EEG[C].Proceedings of XIX International Symposium on Information and Communication Technologies,2003. 被引量:1
  • 5Oropesa E, Cycon HL,Jobert M. Sleep Stage Classification using Wavelet Transform and Neural Network [ R ]. ICSI Technical Report , TR-99-008,1999. 被引量:1
  • 6LI Yong,ZHANG Shengxun. Apply Wavelet Transform to analysis EEG signal[ C]. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam,1996 : 1007-1008. 被引量:1
  • 7Huang NE,ZHEN Shen, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]. Proceedings of the Royal Society of London, London 1998,454 (A):903- 995. 被引量:1
  • 8Huang NE, Wu ML,Long SR. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis [C]. Proceedings of the Royal Society of London, London 2003,459 ( a ) :2317-2345. 被引量:1
  • 9Huang W,Shen Z,Huang NE, et al. NonLinear indicial response of complex nonstationary osciLLations as puLmonary hypertension responding to step hypoxia[C]. Proceedings of the National Academy of Sciences USA, 1999,96 (5) : 1834-1839. 被引量:1
  • 10Yang JN, Lei Y, Pan S, et al. System identification of linear structures based on hilbert-huang spectral analysis [J]. Earthquake Engineering and Structural Dynamics, 2003,32 (9) : 1443-1467. 被引量:1

共引文献34

同被引文献41

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部