期刊文献+

基于EEG复杂度和近似熵的睡眠自动分期 被引量:4

Auto Classification for Sleep Stage based on Complexity and Approximate Entropy of EEG
下载PDF
导出
摘要 目的:因睡眠问题的日益严重,且睡眠分期是睡眠状况分析和睡眠质量评价的前提和基本内容,所以本文的主要目的就是基于脑电信号研究睡眠自动分期的方法。方法:使用小波变换对脑电信号进行预处理,因为脑电信号的非平稳性选择非线性分析方法,提取信号的复杂度和近似熵作为睡眠脑电各个时期的特征值,最后利用支持向量机对睡眠各阶段进行分期决策。结果:睡眠各期脑电的近似熵值和复杂度值随着睡眠状态的变化而不同,睡眠各期可以根据特征值的不同而得到有效区分,通过对1458个脑电信号样本进行自动分期,得到平均准确率为85.67%。结论:小波变换可以很好的对脑电信号的消噪处理,而脑电信号的复杂度值和近似熵值作为特征值,可以作为睡眠分期的有效分类依据。 Objective: Due to sleep problems are growing, and classification for sleep stage is premise and basis of sleep's analysis and evaluation. So this paper aims at the auto classification for sleep stage based on electroencephalogram (EEG). Methods: The original signals were preprocessed by the means of wavelet transform. We chose nonlinear analytical methods because of the nonstationarity of EEG signal. The complexity and approximate entropy were extracted from the denoised sleep data. Finally support vector machine (SVM) was adopted for the auto classification for sleep stage. Results: The value of complexity and approximate entropy were different with the change of sleep state. Sleep stages were effectively distinguished through the test of 1698 samples, and the average accuracy of auto classification was 87.34%. Conclusion: The results show that wavelet transform can play well in the denoising processing for EEG signal. The sleep stages can be effectively determined with the complexity and approximate entropy as feature value.
作者 王歆媛 汪丰
出处 《软件》 2013年第2期97-100,共4页 Software
关键词 睡眠自动分期 EEG 小波变换 复杂度 近似熵 支持向量机 sleep stage classification EEG wavelet transform complexity approximate entropy support vector machine
  • 相关文献

参考文献4

二级参考文献18

  • 1赵捷,华玫.滤除ECG中肌电和宽频率范围工频干扰的小波算法[J].航天医学与医学工程,2004,17(3):224-228. 被引量:12
  • 2王娅仙,周传德,秦树人.基于虚拟仪器技术的海量数据存储记录仪[J].重庆大学学报(自然科学版),2004,27(10):21-24. 被引量:7
  • 3SHEN M, SUN L, CHAN F H Y. Method for Extracting Timevarying Rhythms of Electroencephalogy Via Wavelet Packet Analysis[J]. IEE Proceedings, Science, Measurement and Technology, 2001,148(1):23-27. 被引量:1
  • 4DRORI I, LISCHINSKI D. Fast Multiresolufion Image Operafios in the Wavelet Domain [J]. IEEE Transactions on Visualization and Computer Gmphles, 2003,9(3):395-411. 被引量:1
  • 5Mutapcic A, Shimayama T, Flores A. Automatic sleep stage classification using frequency analysis of EEG[C].Proceedings of XIX International Symposium on Information and Communication Technologies,2003. 被引量:1
  • 6Oropesa E, Cycon HL,Jobert M. Sleep Stage Classification using Wavelet Transform and Neural Network [ R ]. ICSI Technical Report , TR-99-008,1999. 被引量:1
  • 7LI Yong,ZHANG Shengxun. Apply Wavelet Transform to analysis EEG signal[ C]. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam,1996 : 1007-1008. 被引量:1
  • 8Huang NE,ZHEN Shen, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]. Proceedings of the Royal Society of London, London 1998,454 (A):903- 995. 被引量:1
  • 9Huang NE, Wu ML,Long SR. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis [C]. Proceedings of the Royal Society of London, London 2003,459 ( a ) :2317-2345. 被引量:1
  • 10Huang W,Shen Z,Huang NE, et al. NonLinear indicial response of complex nonstationary osciLLations as puLmonary hypertension responding to step hypoxia[C]. Proceedings of the National Academy of Sciences USA, 1999,96 (5) : 1834-1839. 被引量:1

共引文献38

同被引文献34

  • 1BRODBECK V, KUHN A, VON WEGNER F, et al. EEG microstates of wakefulness and NREM sleep [J]. Neuroim- age, 2012, 62(3): 2129-2139. 被引量:1
  • 2XIAO Meng, YAN Hong, SONG Jinzhong, et al. Sleep sta- ges classification based on heart rate variability and random forest[J]. Biomed Signal Process Control, 2013, 8(6): 624- 633. 被引量:1
  • 3GIINESS, POLAT K, YOSUNKAYA . Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting [J]. Expert Syst Appl, 2010, 37(12): 7922-7928. 被引量:1
  • 4SUSM,:KOVJK K, KRAKOVSKA A. Discrimination ability of individual measures used in sleep stages classification [J]. Artif Intell Med, 2008, 44(3): 261-277. 被引量:1
  • 5CORSI-CABRERA M, MUNOZ-TORRES Z, DEI. RiO- PORTILLA Y, et al. Power and coherent oscillations distin- guish REM sleep, stage 1 and wakefulness[J]. Int J Psycho- Dhysiol, 2006, 60(1): 59-66. 被引量:1
  • 6KOLEY B, DEY D. An ensemble system for automatic sleep stage classification using single channel EEG signal [J]. Com- put Biol Med, 2012, 42(12): 1186-1195. 被引量:1
  • 7FELL J, ROSCHKE J, MANN K, et al. Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures [J]. Electroencephalogr Clin Neurophysiol, 1996, 98(5): 401-410. 被引量:1
  • 8RONZHINA M, JANOUSEK O, KOLA.I:OV.: J, et al. Sleep scoring using artificial neural networks [J]. Sleep Mcd Rev, 2012, 16(3), 251-263. 被引量:1
  • 9WU H T, TALMON R, LO Y L. Assess sleep stage by modern signal processing techniques [J]- IEEE Trans Biomed Eng, 2015, 62(4): 1159-1168. 被引量:1
  • 10ZHU Guohun, LI Yan, WEN P P. Analysis and classification of sleep stages based on difference visibility graphs from a sin- gle-ehannel EEG signal EJ']. IEEE J Biomed Health Inform, 2014, 18(6): 1813-1821. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部