期刊文献+

单导联癫痫脑电检测算法探究

Study of Single Channel Epilepsy Detection Algorithm
下载PDF
导出
摘要 癫痫检测一直是医学界的难题,对于检测算法而言,分类精度和敏感度是衡量检测系统的重要指标。癫痫检测实际上可归分为二分类问题,对开源数据集CHB-MIT Scalpe EEG Database的23例患者单导联C3-P3,利用BP、CNN和SVM网络进行癫痫检测探究。检测结果表明,BP网络、CNN网络、SVM分类器的分类进度分别为67.01%、83.33%、93.40%,在未来癫痫检测分类应用方面具有较大的潜在意义。 Epilepsy detection has always been a difficult problem in the medical community.For the detection algorithm,accuracy and error rate are important indexes to measure the detection system.Epilepsy detection can be classified into two classification problem actually,in this paper,the open source data collection of CHB-MIT Scalpe EEG Database of 23 cases with single lead C3-P3,using BP,CNN and the SVM network for automatic detection.The test results show that the BP network,the network,the accuracy of the SVM classifier are 63.8%,80.2%and 93.78%respectively.It has great potential significance in the future application of classification of epilepsy detection.
出处 《工业控制计算机》 2019年第1期79-80,共2页 Industrial Control Computer
基金 国家自然科学基金资助项目(60673132)
关键词 癫痫检测 单导联 SVM CNN epilepsy detection single channel SVM CNN
  • 相关文献

参考文献8

二级参考文献28

  • 1Alotaiby T N, Alshebeili S A, Alshawi T, et al. EEG sei- zure detection and prediction algorithms: a survey [ J ]. EURASIP Journal on Advances in Signal Processing, 2014,2014 : 183. 被引量:1
  • 2Tzallas A T, Tsipouras M G, Fotiadis D I. Automatic Sei- zure Detection Based on Time-Frequency Analysis and Artificial Neural Networks [ J ]. Computational Intelligence and Neuoscience, 2007,2007 : 80510. 被引量:1
  • 3Prior P F, Virden R S M, Maynard D E. An EEG device formonitoring seizure discharges [ J ]. Epilepsia, 1973,14(40) :367-372. 被引量:1
  • 4Gotman J. Automatic recognition of interictal spikes [ J ]. Electroencephalography and clinical neurophysiology Sup- plement, 1984, 37:93-114. 被引量:1
  • 5Gabor A J, Leach R R, Dowlab F U. Automated seizure detection using a self-organizing neuralnetwork [ J ]. Elec- troencephalography and Clinical Neurophy-siology, 1996, 99(3 ) :257-266. 被引量:1
  • 6Polat K, Gtlnes S. Classification of epileptic form EEG u- sing a hybrid system based on decision tree classifier and fast Fourier transform[ J]. Applied Mathematics and Com- putation,2007,187 (2) : 1017-1026. 被引量:1
  • 7Rana P, Lipor J, Lee H, et al. Seizure detection using the phase-slope index and multichannel ECoG[ J ]. Biomedic- al Engineering, IEEE Transaction on, 2012, 59 ( 4 ) : 1125-1134. 被引量:1
  • 8Pereda E, Gamundi A, Rial R, et al. Nan-linear behav- iour of human EEG: fractal exponent versus correlation dimension inawake and sleep stages [ J ]. Neuroscience Letters, 1998, 250(2) :91-94. 被引量:1
  • 9Krystal A D, Prado R, West M. New methods of time se- ries analysis of non-stationary EEG data: eigenstructure decompositions of time varying autoreg-ressions [ J ]. Clini- cal Neurophysiology, 1999,110(12) :2197-2206. 被引量:1
  • 10Lerner D E. Monitoring changing dynamics with correla- tion integrals:ease study of an epileptic seizure [J].Phys- ica D : Nonlinear Phenomena, 1996,97 (4) : 563-576. 被引量:1

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部