期刊文献+

基于离散小波变换和主分量分析的P300分类算法研究 被引量:2

Study on the P300 Classification method Based on DWT and PCA
原文传递
导出
摘要 提出了一种应用离散小波变换(DWT)结合主分量分析(PCA)进行特征提取,然后用支持向量机(SVM)对P300进行分类的算法。该算法首先在一定预处理基础上使用离散小波变换对P300脑电信号分解,然后选取蕴含P300大多数信息的特征尺度进行小波重构,从而达到去噪增强的效果。然后使用PCA进行特征的提取和集中。最后使用支持向量机对提取到的特征分量进行分类。该算法将小波分解和主分量分析结合起来进行特征增强与提取,实验结果表明,该算法能够达到令人满意的正确分类率。 A P300 classification method based on discrete wavelet transform(DWT),principal component analysis(PCA) and support vector machine(SVM) is proposed. First, P300 signals which have been preprocessed are decomposed by discrete wavelet transform, choose feature scales which contain much P300 information to do wavelet reconstruction to wipe off noise and strengthen the useful signals. After that, PCA is used to extract the feature, at the same time the feature is focused. Support vector machine(SVM) is used to the P300 classification at last. This method connect the DWT with PCA to enhance the feature and extraction. The experiment results show that the classification rate can be gained satisfactorily .
作者 张娜 练秋生
出处 《电子技术(上海)》 2007年第11期192-194,共3页 Electronic Technology
关键词 P300 脑-机接口 离散小波变换 支持 向量机 P300, Brain-Computer Interface, discrete wavelet transform(DWT), support vector machine(SVM)
  • 相关文献

参考文献6

  • 1N. Xu, X. Gao, B. Hong, X. Miao, S Gao, F. Yang, "Enhancing P300 Wave Detection Using ICA-Based Subspace Projections for BCI Applications", IEEE Trans. Biomed. Eng. 2004,51(6), 1067-1071 被引量:1
  • 2M. Kaper, P. Meinicke, U. Grosskathoefer, T. Lingner, H. Ritter, "Support Vector Machines for the P300 Speller Paradigm", IEEE Trans Biomed. Eng. 2004,51(6):1073-1076 被引量:1
  • 3V. Bostanov, "Feature Extraction From Event-Related Brain Potentials With the Continuous Wavelet Transform and the t-Value Scalogram", IEEE Trans. Biomed. Eng. 2004.51(6):1057-1061 被引量:1
  • 4薛建中,闫相国,郑崇勋.用核学习算法的意识任务特征提取与分类[J].电子学报,2004,32(10):1749-1753. 被引量:10
  • 5华小梅..在脑-机接口技术中应用小波变换分析视觉诱发电位[D].华中科技大学,2004:
  • 6Motoki Sakai, Hiroyuki Ishita, Yuuki Ohshiba, Wenxi Chen, and Daining Wei, P300 Detection for Brain-Computer Interface from Electroencephalogram Contaminated by Electrooculogram, Proceedings of The Sixth IEEE International Conference on Computer and Information Technology, 2006 被引量:1

二级参考文献12

  • 1Keirn ZA,Aunon JI.A new mode of communication between man and his surroundings [J].IEEE Trans Biomed Eng,1990,37(12):1209-1214. 被引量:1
  • 2Anderson CW,Stolz EA,Shamsunder S.Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[J].IEEE Trans Biomed Eng,1998,45(3):277-286. 被引量:1
  • 3Millan del RJ,Mourino J,Franze M,et al.A local neural classifier for the recognition of EEG patterns associated to mental tasks[J].IEEE Trans Neural Networks,2002,13(3):678-686. 被引量:1
  • 4Muller K-R,Mika S,Ratsch G,et al.An introduction to kernel-based learning algorithms[J].IEEE Trans Neural Networks,2001,12(1045-9227):181-201. 被引量:1
  • 5Vapnik VN.Statistical Learning Theory[M].New York:John Wiley and Sons Inc.1998. 被引量:1
  • 6Scholkopf B,Mika S,Burges CJC,et al.Input space versus feature space in kernel-based methods[J].IEEE Trans Neural Networks,1999,10(5):1000-1017. 被引量:1
  • 7Scholkopf B,Smola AJ,Muller K-R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10:1299-1319. 被引量:1
  • 8Lu J,Plataniotis KN,Venetsanopoulos AN.Face recognition using kernel direct discriminant analysis algorithms[J].IEEE Trans Biomed Eng,2003,14(1):117-126. 被引量:1
  • 9Muller K-R,Smola AJ,Ratsch G,et al.Predicting time series with support vector machines[A].in Artificial Neural Networks-ICANN97[C]. Berlin,Germany:Springer-Verlag,1997.999-1004. 被引量:1
  • 10Galin D,Ornstein RE.Hemispheric specialization and the duality of consciousness[A].in Human Behavior and Brain Function[C].USA:Springfield,IL,1973. 被引量:1

共引文献9

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部