期刊文献+

基于Kinect动态手势识别的机械臂实时位姿控制系统 被引量:16

Real-time Mechanical Arm Position and Pose Control System by Dynamic Hand Gesture Recognition Based on Kinect Device
下载PDF
导出
摘要 基于Kinect动态手势识别达到实时控制机械臂末端位姿的效果。位置控制信息的获取采用Kinect计算手部4个关节点在控制中的位置变动,数据噪声在控制中易引起机械臂误动作和运动振动等问题,为了避免噪声对实时控制的不利影响,采用卡尔曼滤波跟踪降噪。姿势控制信息通过采集手部点云经滤波处理后应用最小二乘拟合的方式获取掌心所在平面,运用迭代器降噪处理。系统通过对手部位置和姿势信息的整合、手势到机械臂空间坐标映射及运动学求解来实时控制机械臂末端位姿。实验结果证明,手势控制系统满足控制要求,简单、易于操作,机械臂实时响应速度快、运动准确。 The research achieved to control the mechanical arm position and pose by using real-time dynamic gesture recognition based on Kinect device. The information of the position controlling was obtained by calculating the position changes of the four hand joint points. The noise of the joints was liable to lead mechanical arm misoperation and the vibration of motion during the control of the mechanical arm. Aiming to avoid the negative impact of the noise in real-time controlling, Kalman filter was adopted to track position and reduce noise. According to the hand point cloud information, the information of the posture controlling was obtained by means of using least squares fitting to get the plane of hand mind. The end of the position and pose of the mechanical arm was controlled by integrating the position and posture information, space coordinate mapping and the resolving of kinematics in real-time. The result of the experiment indicated that the gesture control was easy to operate and mechanical arm responded at high speed. The effect of filter was so remarkable that the motion of the mechanical arm was controlled accurately and smoothly, and no mechanical arm misoperation and others controlling anomaly. Gesture control system could meet the requirement of actually controlling. System could be applied to a variety of human-computer interaction.
作者 倪涛 赵泳嘉 张红彦 刘香福 黄玲涛 NI Tao ZHAO Yongjia ZHANG Hongyan LIU Xiangfu HUANG Lingtao(College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2017年第10期417-423,407,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(51305153 51575219)
关键词 手势控制 Kinect传感器 卡尔曼滤波 机械臂位姿控制 人机交互 gesture control Kinect sensor Kilman filter mechanical arm position and pose control human-computer interaction
  • 相关文献

参考文献6

二级参考文献27

  • 1赵金英,张铁中,杨丽.西红柿采摘机器人视觉系统的目标提取[J].农业机械学报,2006,37(10):200-203. 被引量:54
  • 2ZHANG Jian-jie, LIN Hao, ZHAO Ming-guo. A fast algorithm for hand gesture recognition using relief [ C ]//Proc of the 6th International Conference on Fuzzy Systems and Knowledge Discovery. 2009 : 8-12. 被引量:1
  • 3KAO M C, LI T H S. Design and implementation of interaction system between humanoid robot and human hand gesture [ C]//Proc of SICE Annual Conference. [S. 1. ] : IEEE Press,2010: 1616- 1621. 被引量:1
  • 4CHEN Qing, GEORGANAS N D, PETRIU E M. Real-time vision-based hand gesture recognition using Haar-like features [ C ] //Proc of IEEE Instrumentation and Measurement Technology Conferencec. [ S. 1. ] : IEEE Press,2007:l-6. 被引量:1
  • 5ZHANG Shi-lin, ZHANG Bo. Using HMM to sign language video retrieval [ C ]//Proc of the 2nd International Conference on Computational Intelligence and Natural Computing. 2010 :55-59. 被引量:1
  • 6SILANON K, SUVONVORN N. Hand motion analysis for Thai alphabet recognition using HMM[J]. International Journal of Information and 日ectronics Engineering, 2011,1 (1) :65-71. 被引量:1
  • 7IKEMURA S, FUJIYOSHI H. Real-time human detection using relational depth similarity features [ C ] //Proc of the 10th Asian Conference on Computer Vision. 2011 :25-38. 被引量:1
  • 8URTASUN R, FUA P. 3D human body tracking using deterministic temporal motion models [ C ] //Proc of the 10th Asian Conference on Computer Vision. 2004 : 92-106. 被引量:1
  • 9杨青.手势识别就是研究[D].大连:大连理工大学,2010. 被引量:1
  • 10KAHOL K, TRIPATHI P, PANCHANATHAN S, et al. Gesture segmentation in complex motion sequences [ C ] //Proc of IEEE International Conference on Image Processing. 2003 : 105-108. 被引量:1

共引文献75

同被引文献146

引证文献16

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部