期刊文献+

小样本贝叶斯网络参数学习方法 被引量:9

Bayesian Network Parameter Learning Method on Small Samples
下载PDF
导出
摘要 当训练数据充分时,极大似然估计方法是贝叶斯网络参数学习典型且有效的方法。但当训练数据量少且领域知识缺乏时,极大似然估计往往无法给出一致无偏的参数估计。为此,提出一种新的贝叶斯网络参数学习方法TL-WMLE。将极大似然估计方法与迁移学习理论、样本不均衡方法相结合,解决数据量过少、领域知识缺乏时的贝叶斯网络参数学习问题。使用SMOTE-N方法构建辅助分类器,并依据协变量偏移理论,利用辅助分类器的分类结果来计算源域数据权值。采用赋权的源域数据和目标域数据构造目标域的似然函数,应用该似然函数对目标域的参数进行极大似然估计。实验结果表明,在小样本情况下,该方法的分类精度优于极大似然估计方法。 Maximum likelihood estimation is a classical and effective method for Bayesian network parameter learning on large samples, but it is not consistent when learning on small sample with little expertise. To address the issue, a novel method called TL-WMLE is proposed for Bayesian network parameter learning, which combines maximum likelihood, transfer learning and imbalance sample methods. The novel method uses an auxiliary classifier constructed by the SMOTE-N method and covariate migration theory, and computes the weights of source samples according to the predicted probability of the source domain by the auxiliary classifier. Then the proposed method mixes the reweighted source train sample and the target train sample to build a likelihood function on the target domain, and uses the new likelihood function to learn the parameters of the target domain via maximum likelihood estimation. Experimental results demonstrate that the classification accuracy of the proposed method outperforms that of the likelihood method on small samples.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第8期153-159,165,共8页 Computer Engineering
基金 国家自然科学基金资助项目"机器学习核方法模型选择与组合的核矩阵近似分析方法"(61170019)
关键词 贝叶斯网络 参数学习 小样本 迁移学习 目标域 Bayesian Network(BN) parameter learning small sample transfer learning target domain
  • 相关文献

参考文献15

  • 1Heckerman D,Dan G,David M C.Learning Bayesian Networks:The Combination of Knowledge and Statistical Data[J].Machine Learning,1995,20(3):197-243. 被引量:1
  • 2Grossman D,Domingos P.Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood[C]//Proceedings of the 21st International Conference on Machine Learning.New York,USA:ACM Press,2004:46-53. 被引量:1
  • 3Shen Bin,Su Xiaoyuan,Greiner R,el al.Discriminative Parameter Learning of General Bayesian Network Classifiers[C]//Proceedings of the 15th IEEE International Conference on Tools with Artificial Intel-ligence.Washington D.C.,USA:IEEE Press,2003:296-305. 被引量:1
  • 4廖学清,吕强,单冬冬.数据缺失下学习贝叶斯网的SEM算法[J].计算机工程,2009,35(8):214-216. 被引量:6
  • 5Zhou Yun,Fenton N,Neil M,et al.Incorporating Expert Judgement into Bayesian Network Machine Learning[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Beijing,China:IJCAI Inc.,2013:3249-3250. 被引量:1
  • 6Druzdel M J,Van D G L C.Building Probabilistic Networks:“Where Do the Numbers Come From?”[J].IEEE Transactions on Knowledge and Data Engineering,2000,12(4):481-486. 被引量:1
  • 7Zhou Yun,Fenton N,Neil M.Bayesian Network Approach to Multinomial Parameter Learning Using Data and Expert Judgments[J].International Journal of Approximate Reasoning,2014,55(5):1252-1268. 被引量:1
  • 8Pan Jialin,Yang Qiang.A Survey on Transfer Learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. 被引量:1
  • 9张建军,王士同,王骏.迁移学习数据分类中的ESVM算法[J].计算机工程,2012,38(8):173-176. 被引量:6
  • 10Shimodaira H.Improving Predictive Inference Under Covariate Shift by Weighting the Log-likelihood Func-tion[J].Journal of Statistical Planning and Inference,2000,90(2):227-244. 被引量:1

二级参考文献19

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2潘吉斯,吕强,王红玲.一种并行蚁群Bayesian网络学习的算法[J].小型微型计算机系统,2007,28(4):651-655. 被引量:9
  • 3吕强,高彦明,钱培德.共享信息素矩阵:一种新的并行ACO方法[J].自动化学报,2007,33(4):418-421. 被引量:11
  • 4张连文,郭海鹏.贝叶斯网络引论[M].北京:科学出版社,2007. 被引量:4
  • 5Friedman N. Learning Belief Networks in the Presence of Missing Values and Hidden Variables[C]//Prnc. of the 14th Int'l Conf. on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 1997. 被引量:1
  • 6Campos L M, Fernadez J M, Gamez J A, et al. Ant Colony Optimization for Learning Bayesian Networks[J]. Int. J. Approx. Reasoning, 2002, 31 (3): 291-311. 被引量:1
  • 7Senatoe T E.Transfer Learning Progress and Potential[J].AI Magazine,2011,32(1):84-86. 被引量:1
  • 8Zhang Huxiang.Transfer Learning Throught Domain Adaptation[C]//Proceedings of the 8th International Symposium on Neural Networks.Guilin,China,[s.n.],2011:505-512. 被引量:1
  • 9Mei Shuyu,Wang Fei,Zhou Shuigeng.Gene Ontology Based Transfer Learning for Protein Subcellular Localization[J].BMC Bioinformatics,2011,12(1):44-54. 被引量:1
  • 10Chen Mingsan,Han Jiawei,Yu P S.Data Mining:An Overview from a Database Perspectiv[J].IEEE Trans.on Knowledge and Data Engineering,1996,8(2):866-883. 被引量:1

共引文献10

同被引文献72

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部