期刊文献+

基于迁移学习的贝叶斯网络参数学习方法 被引量:5

Bayesian Network Parameter Learning Method Based on Transfer Learning
下载PDF
导出
摘要 针对贝叶斯网络参数迁移过程中对源域及目标域限定条件较多等问题,在考虑源域-目标域多种信息形式的情况下,提出一种基于贝叶斯网络参数迁移学习的统一框架.该方法综合考虑了源域结构和数据量在迁移中的作用,在结构相似性的基础上,探讨了备选源域数据量对参数迁移的影响.在迁移过程中引入与目标域数据相关的平衡系数.通过平衡系数将目标域数据与迁移过程联系起来,实现平衡系数的自动调节.Asia网络验证了本文方法的准确性. In order to solve the problem that there are many restrictions on the source domain and the target domain in the process of Bayesian network parameter transfer,a unified framework based on Bayesian network parameter transfer learning was proposed under the condition of considering multiple information forms of source domain and target domain.The method considers the role of source domain structure and data volume in the migration.On the basis of structural similarity,the influence of alternative source domain data volume on parameter migration was discussed.The balance coefficient related to the target domain data was introduced in the migration process.According to the balance coefficient,the target domain data was linked with the migration process to realize the automatic adjustment of the balance coefficient.The Asia network verifies the accuracy of the method in this paper.
作者 王姝 关展旭 王晶 孙晓辉 WANG Shu;GUAN Zhan-xu;WANG Jing;SUN Xiao-hui(School of Information Science&Engineering,Northeastern University,Shenyang 110819,China;Dalian Tianlai Security Risk Management Technology Limited Company,Dalian 116021,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期509-515,共7页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61973057) 矿冶过程自动控制技术国家(北京市)重点实验室开放课题(BGRIMM-KZSKL-2018-09).
关键词 贝叶斯网络 参数学习 迁移学习 结构相似性 平衡系数 Bayesian network parameter learning transfer learning structural similarity equilibrium coefficient
  • 相关文献

参考文献6

二级参考文献50

  • 1雷英杰,王宝树,路艳丽.基于自适应直觉模糊推理的威胁评估方法[J].电子与信息学报,2007,29(12):2805-2809. 被引量:30
  • 2Heckerman D,Dan G,David M C.Learning Bayesian Networks:The Combination of Knowledge and Statistical Data[J].Machine Learning,1995,20(3):197-243. 被引量:1
  • 3Grossman D,Domingos P.Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood[C]//Proceedings of the 21st International Conference on Machine Learning.New York,USA:ACM Press,2004:46-53. 被引量:1
  • 4Shen Bin,Su Xiaoyuan,Greiner R,el al.Discriminative Parameter Learning of General Bayesian Network Classifiers[C]//Proceedings of the 15th IEEE International Conference on Tools with Artificial Intel-ligence.Washington D.C.,USA:IEEE Press,2003:296-305. 被引量:1
  • 5Zhou Yun,Fenton N,Neil M,et al.Incorporating Expert Judgement into Bayesian Network Machine Learning[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Beijing,China:IJCAI Inc.,2013:3249-3250. 被引量:1
  • 6Druzdel M J,Van D G L C.Building Probabilistic Networks:“Where Do the Numbers Come From?”[J].IEEE Transactions on Knowledge and Data Engineering,2000,12(4):481-486. 被引量:1
  • 7Zhou Yun,Fenton N,Neil M.Bayesian Network Approach to Multinomial Parameter Learning Using Data and Expert Judgments[J].International Journal of Approximate Reasoning,2014,55(5):1252-1268. 被引量:1
  • 8Pan Jialin,Yang Qiang.A Survey on Transfer Learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. 被引量:1
  • 9Shimodaira H.Improving Predictive Inference Under Covariate Shift by Weighting the Log-likelihood Func-tion[J].Journal of Statistical Planning and Inference,2000,90(2):227-244. 被引量:1
  • 10Bickel S,Brückner M,Scheffer T.Discriminative Learning for Differing Training and Test Distributions[C]//Proceedings of the 24th International Conference on Machine Learning.New York,USA:ACM Press,2007:81-88. 被引量:1

共引文献56

同被引文献48

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部