期刊文献+

一种新的面向迁移学习的L_2核分类器 被引量:1

A Novel Transfer-learning-oriented L_2 Kernel Classifier
下载PDF
导出
摘要 基于密度差(Difference Of Density,DOD)思想,L2核分类器算法具有良好的分类性能及稀疏性,然而其训练域与测试域独立同分布的假设限制了其应用范围。针对此不足,该文提出一种新的面向迁移学习的L2核分类器(Transfer Learning-L2 Kernel Classification,TL-L2KC),该方法既保持了L2核分类器算法良好的分类性能,又能处理数据集缓慢变化及训练集在特定约束条件下获得导致训练集和未来测试集分布不一致的问题。基于人造数据集和UCI真实数据集的实验表明,该文提出的TL-L2KC算法较之于经典的迁移学习分类方法,具有相当的、甚至更好的性能。 Based on the concept of Difference Of Density (DOD), L2 Kernel Classifier(L2KC) exhibits its good performance. However, the assumption that the training domain and testing domain are independent and identically distributed severely constrains its usefulness. In order to overcome this shortcoming, a novel classifier named Transfer Learnging-L2 Kernel Classification (TL-L2KC) is proposed for the changing environment. The proposed classifier can not only inherit the advantage of L2KC, but also deal with the problem that the distribution inconsistency between the training and testing sets which is caused by the slow change of the datasets or the training set obtained with specific constraints. As demonstrated by extensive experiments in simulation datasets and UCI benchmark datasets, the proposed classifier TL-L2KC shows the performance which is comparable to or better than that of the classical algorithms on the transfer learning classification problems.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2059-2065,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61272210 61170122) 江苏省研究生创新工程项目(CXZZ12-0759)资助课题
关键词 支持向量机 迁移学习 密度差 L2核分类器 Support Vector Machine (SVM) Transfer learning Difference Of Density (DOD) L2 KernelClassification (L2KC)
  • 相关文献

参考文献14

  • 1张战成,王士同,邓赵红,Chung Fu-lai.支持向量机的一种快速分类算法[J].电子与信息学报,2011,33(9):2181-2186. 被引量:15
  • 2Kim J and Scott C. Kernel classification via integrated squared error[C]. Proceedings of the IEEE 14th Workshop on Statistical Signal Processing, Madison, 2007: 783-787. 被引量:1
  • 3Kim J and Scott C. Performance analysis for L2 kernel classification[C]. Proceedings of Advances in Neural Information Processing Systems, Vancouver, 2008: 836-843. 被引量:1
  • 4Kim J and Scott C. L2 kernel classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1822-1831. 被引量:1
  • 5Bruzzone L and Marconcini M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787. 被引量:1
  • 6Pan S J, Tsang I W, Kwok J T, et al.. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. 被引量:1
  • 7Zhang Hu-xiang. Transfer learning through domainadaptation[C]. Proceedings of the 8th International Symposium on Neural Networks, Guilin, 2011: 505-512. 被引量:1
  • 8于重重,田蕊,谭励,涂序彦.非平衡样本分类的集成迁移学习算法[J].电子学报,2012,40(7):1358-1363. 被引量:27
  • 9张建军,王士同,王骏.迁移学习数据分类中的ESVM算法[J].计算机工程,2012,38(8):173-176. 被引量:6
  • 10Pan S J and Yang Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345- 1359. 被引量:1

二级参考文献49

  • 1Huang Kaizhu, Zheng Danian, Sun Jun, et al.. Sparse learning for support vector classification. Pattern Recognition Letters, 2010, 31(13): 1944-1951. 被引量:1
  • 2Zhang Kai and Kwok J T. Simplifying mixture models through function approximation. IEEE Transactions on Neural Networks, 2010, 21(4): 644-658. 被引量:1
  • 3Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods- Support Vector Learning, California, USA, 1999 185-208. 被引量:1
  • 4Suykens J A K and Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300. 被引量:1
  • 5Sch61kopf B, Smola A J, Williamson R C, et al.. New support vector algorithms. Neural Computation, 2000, 12(5): 1207-1245. 被引量:1
  • 6Burges C J C and Scholkopf B. Simplified support vector decision rules. In 13th International Conference on Machine Learning, Bari, Italy 1996:71 77. 被引量:1
  • 7Chang Chih-chung and Lin Chih-jen. LIBSVM: a library for support vector machines. Software available at http:// www.csie.ntu.edu.tw/cjlin/libsvm, 2001. 被引量:1
  • 8Frank A and Asuneion A. UCI machine learning repository Http://www.ics.uci.edu/-mlearn/ML Repostitory. html 2007. 被引量:1
  • 9Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 被引量:1
  • 10Vapnik V. An overview of statistical learning theory [J]. IEEE Trans on NeuraI Networks, 1999, 10(5): 988-999. 被引量:1

共引文献59

同被引文献27

  • 1Tommasi T,OrabonaF,and Caputo B.Learning categories from few examples with multi model knowledge transfer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(5):928-941. 被引量:1
  • 2Yao Y and Doretto G.Boosting for transfer learning with multiple sources[C].Proceedings of Computer Vision and Pattern Recognition,San Francisco,2010:1855-1862. 被引量:1
  • 3Long M S,Wang J M,Ding G G,et al..Adaptation regularization a general framework for transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(5):1076-1089. 被引量:1
  • 4Lin D,An X,and Zhang J.Double-bootstrapping source data selection for instance-based transfer learning[J].Pattern Recognition Letters,2013,34(11):1279-1285. 被引量:1
  • 5Kuzborskij I,Orabona F,and Caputo B.From N to N+1:multiclass transfer incremental learning[C].Proceedings of Computer Vision and Pattern Recognition,Portland,2013:3358-3365. 被引量:1
  • 6Zhu Y,Chen Y Q,Lu Z Q,et al..Heterogeneous transfer learning for image classification[C].Proceedings of AAAI Conference on Artificial Intelligence,San Francisco,2011:1304-1309. 被引量:1
  • 7Pang J,Huang Q,Yan S,et al..Transferring boosted detectors towards viewpoint and scene adaptiveness[J].IEEE Transactions on Image Processing,2011,20(5):1388-1400. 被引量:1
  • 8Li G,Qin L,Huang Q,et al..Treat samples differently:object tracking with semi-supervised online CovBoost[C].Proceedings of International Conference on Computer Vision,Barcelona,2011:627-634. 被引量:1
  • 9Qi G J,Aggarwal C,Rui Y,et al..Towards cross-category knowledge propagation for learning visual concepts[C].Proceedings of Computer Vision and Pattern Recognition,Colorado Springs,2011:897-904. 被引量:1
  • 10Chu W S,Torre F D,and CohnJ F.Selective transfer machine for personalized facial action unit detection[C].Proceedings of Computer Vision and Pattern Recognition,Portland,2013:3515-3522. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部