期刊文献+

基于最大化密度差的L_2核分类器

L_2 kernel classifier based on maximum difference of densities
原文传递
导出
摘要 提出一种基于最大化密度差的L2核分类器算法MDL2KC.该算法不仅可以保证估计出的两类密度差接近于真实密度差,而且可以使两类的密度差尽可能大.利用人工数据集和标准UCI数据集进行实验验证,所得结果表明,MDL2KC算法较传统的L2核分类器算法具有更好的分类效果和稀疏特性. This paper proposes a kernel classification algorithm(MDL2KC) based on the theory of maximum difference of densities. MDL2KC not only ensure the estimate difference of densities fairly close to the true difference of densities, but also maximize the difference of densities between two classes. As demonstrated by extensive experiments in artifical and UCI datasets, the proposed algorithm has better classification effect and sparsity than the traditional L2 kernel classification algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2012年第1期77-81,86,共6页 Control and Decision
基金 国家自然科学基金项目(60903100 60975027)
关键词 分类算法 稀疏 密度差 窗宽 kernel classification algorithm sparsity, difference of densities bandwidth
  • 相关文献

参考文献18

  • 1Kim J, Scott C. Kemel classification via integrated squared error[C]. IEEE Workshop on Statistical Signal Processing. 2007: 783-787. 被引量:1
  • 2Sch'olkopf B, Smola A J. Learning with kernels[M]. Cambridge: MIT Press, 2002. 被引量:1
  • 3Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. 被引量:1
  • 4Mark Girolami, Chao He. Probability density estimation from optimally condensed data samples[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1253-1264. 被引量:1
  • 5Turlach B A. Bandwidth selection in kernel density estimation: A review[C]. CORE and Institut de Statistique, Universit'e Catholique de Louvain, 1993. 被引量:1
  • 6David W Scott. Parametric statistical modeling by minimum integrated square error[J]. Technometrics, 2001, 43: 274-285. 被引量:1
  • 7Bunea E Tsybakov A B, Wegkamp M H. Sparse density estimation with 11 penalties[C]. Proc of the 20th Annual Conf on Learning Theory. 2007, 4539: 530-543. 被引量:1
  • 8JooSeuk Kim, Clayton D Scott. Kernel classification via integrated squared error[C]. IEEE Workshop on Statistical Signal Processing. 2007: 783-787. 被引量:1
  • 9JooSeuk Kim, Clayton D Scot. Performance analysis for L2 kernel classification[C]. Proc of Advances in Neural Information Processing Systems. 2008, 21:. 被引量:1
  • 10JooSeuk Kim, Clayton D Scott. L2 kernel classification[J]. IEEE Trans on Pattern Analysis Mach Intell, 2010, 32(10): 1822-1831. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部