期刊文献+

大学生就业类别与学业表现的关系模型 被引量:2

Model for Relationship Between College Student Employment Category and Academic Performance
下载PDF
导出
摘要 对大学生所学课程进行分组和投影得到一组隐藏变量,这些隐藏变量之间的相关性很小,可以视为相互独立,将它们作为就业类别结点的子结点,由此得到一个三层次的树型网络结构,网络参数使用EM算法学习获得。通过和朴素贝叶斯形式的就业模型的对比发现,该模型就业预测的准确率高于朴素贝叶斯网,而且受就业样本数量的影响较小。 Grouping and projection courses learned by college students yields a set of hidden variables with little correlation.These hidden variables can be regarded as independent of each other,so can be taken as sub-nodes of employment category node,resulting in a three-level tree-based network structure.The parameters can be learned using the EM algorithm.The comparison with the employment model in the Naive-Bayesian form reveals that the employment prediction is higher than the Naive-Bayesian network and is less affected by the number of employment samples.
作者 朱忠旭
出处 《工业控制计算机》 2021年第11期108-110,共3页 Industrial Control Computer
基金 安徽省高校自然科学研究重点项目“贝叶斯网络在大学生就业能力培养中的应用研究”(KJ2019A1054)。
关键词 朴素贝叶斯网 就业能力 就业预测 Naive Bayes Network employ ability employment forecasting
  • 相关文献

参考文献12

二级参考文献98

  • 1王双成.混合贝叶斯网络隐藏变量学习研究[J].计算机学报,2005,28(9):1564-1569. 被引量:11
  • 2唐文,胡建斌,陈钟.基于模糊逻辑的主观信任管理模型研究[J].计算机研究与发展,2005,42(10):1654-1659. 被引量:84
  • 3Zhang N L, Poole D. A simple approach to Bayesian network computations[C].Proceedings of the Tenth Canadian Con ference on Artifieial Intelligence, 1994 : 171 - 178. 被引量:1
  • 4Dechter R. Bucket elimination: a unifying framework for probabilistic inference[C].Proceedings of the Twelthth Confer ence on Uncertainty in Artificial Intelligence, Portland, Oregon, 1996: 211-219. 被引量:1
  • 5Kask K, Dechter R, Larrosa J, et al. Bucket-tree elimination for automated reasoning [J]. Artificial Intelligence, 2001 (125): 91-131. 被引量:1
  • 6Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. Journal of Artificial Intelligence Research, 1996(5) : 301 - 328. 被引量:1
  • 7Amestoy P R, Davis T A, Du I S. An approximate minimum degree ordering algorithm[J]. AIAM Journal of Matrix Analysis and Aplications, 1996, 17(4) : 886 - 905. 被引量:1
  • 8Shachter R. Evidence absorption and propagation through evidence reversals [J]. Uncertainty in Artificial Intelligence, 1990(5): 173 - 190. 被引量:1
  • 9Adrian Y W C, Boutilier C. Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks[C].Proceedings of the Thirteenth ConJerence on Uncertainty in AI (UAI-97), 1997. 被引量:1
  • 10Darwiche A. A differential approach to inference in Bayesian networks (Tech. Rep. Nos. D-108)[R]. Los Angeles: Computer Science Department, UCLA, 1999. 被引量:1

共引文献92

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部