期刊文献+

Hybrid ETKF-3DVAR方法同化多普勒雷达速度观测资料Ⅰ:模拟资料试验 被引量:11

Assimilation of Doppler radar velocity observations with hybrid ETKF-3DVAR method part Ⅰ: Experiments with simulated data
下载PDF
导出
摘要 利用WRF(Weather research and forecasting)模式及模式模拟的资料,采用Hybrid ETKF-3DVAR(ensemble transform Kalman filter-three-dimensional variational data assimilation)方法同化模拟雷达观测资料。该混合同化方法将集合转换卡尔曼滤波(ensemble transform Kalman filter)得到的集合样本扰动通过转换矩阵直接作用到背景场上,利用顺序滤波的思想得到分析扰动场;然后通过增加额外控制变量的方式把"流依赖"的集合协方差信息引入到变分目标函数中去,在3DVAR框架基础下与观测数据进行融合,从而给出分析场的最优估计。试验结果表明,Hybrid ETKF-3DVAR同化方法相比传统3DVAR可以提供更为准确的分析场,Hybrid方法雷达资料初始化模拟的台风涡旋结构与位置比3DVAR更加接近"真实场",对台风路径预报也有明显改进。通过对比Hybrid S试验与Hybrid F试验发现,Hybrid的正效果主要来源于混合背景误差协方差中的"流依赖"信息,集合平均场代替确定性背景场带来的效果并不显著。 The hybrid ensemble transform Kalman filter—three-dimensional variational data assimilation( Hybrid ETKF-3DVAR) method is used to assimilate the simulated Doppler radial velocity observations based on Weather research and forecasting( WRF) model. The hybrid scheme updates the ensemble mean using a hybrid ensemble and static background-error covariance on the basis of 3DVAR framew ork. The ensemble perturbations in the hybrid scheme are updated by the ETKF scheme,w hich updates the background perturbation through a transform matrix. The results show that Hybrid ETKF-3DVAR provides more accurate analysis than traditional 3DVAR. Additionally,significant positive impact from the hybrid data assimilation is found in vortex structure and position as w ell as the track forecast. It is found that such positive improvements are mostly provided by the flow-dependent covariance other than the use of ensemble mean by comparing the results from 3DVAR and the Hybrid S experiment,w hich uses static background-error covariance and ensemble mean as the first guess.
出处 《大气科学学报》 CSCD 北大核心 2016年第1期81-89,共9页 Transactions of Atmospheric Sciences
基金 国家重点基础研究计划(973计划)项目(OPPAC-2013CB430102) 国家自然科学基金资助项目(41430427 41375025 41205082 41505089) 江苏省气象局北极阁基金项目(BJG201510)
关键词 HYBRID ETKF-3DVAR WRF模式 多普勒雷达 资料 Hybrid ETKF-3DVAR WRF model Doppler radar data
  • 相关文献

参考文献7

二级参考文献103

  • 1顾建峰,QingnongXIAO,Ying-HwaKUO,DaleM.BARKER,薛纪善,马晓星.Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System[J].Advances in Atmospheric Sciences,2005,22(3):415-427. 被引量:20
  • 2崔哲虎,程明虎,乌秋力,王柏忠.快速中值滤波方法及其在Doppler雷达资料处理中的应用[J].高原气象,2005,24(5):727-733. 被引量:14
  • 3Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403- 1423. 被引量:1
  • 4Meng, Z., and F. Zhang, 2008a: Test of an ensemble-Kahnan filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3Dvar in a real-data case study. Mort. Wea. Rev., 136, 522-540. 被引量:1
  • 5Meng, Z., and F. Zhang, 2008b: Test of an ensemble-Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Performance over a warmseason month of June 2003. Mort. Wea. Rev., 136, 3671 -3682. 被引量:1
  • 6Navon, I. M., D. N. Daescu, and Z. Liu, 2005: The impact of background error on incomplete observations for 4D-Var data assimilation with the FSU GSM. Computational Science-ICCS 2005, PT 2, 3515, 837 844. 被引量:1
  • 7R.abier, F., J. N. Thepaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124, 1861- 1887. 被引量:1
  • 8Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mort. Wea. Rev., 131, 1663-1677. 被引量:1
  • 9Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci.. 54, 1642-1661. 被引量:1
  • 10Talagrand, O., 1997: Assimilation of observations, an introduction. J. Meteor. Soc. Japan, 75, 191-209. 被引量:1

共引文献72

同被引文献124

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部