期刊文献+

WRF-Hybrid背景误差协方差调整在台风同化及预报中的应用研究 被引量:10

WRF-Hybrid background error covariance adjustment in typhoon assimilation and forecasting
下载PDF
导出
摘要 利用雷达径向风单点试验和2006年8月超强台风"桑美"个例,首先研究了静态背景误差协方差的尺度化因子和方差在台风系统雷达资料同化中对台风路径和强度预报的影响。结果表明:在高时空分辨率的雷达资料同化中,较小的尺度化因子能显著改进对台风路径的预报;尺度化因子的影响比方差的影响更为显著。基于上述实验结果,进一步研究了WRFDA-Hybrid系统中"流依赖"控制变量的水平局地化和垂直局地化对台风预报的影响。试验结果表明:当"流依赖"的水平局地化距离与静态背景误差协方差的尺度化因子具有等效影响范围的时候,WRFDA-Hybrid能够得到比较合理的分析结果。同时针对雷达观测资料的空间分布特征,本文提出了一种新的基于雷达探测高度的垂直局地化方案,对台风的强度和路径预报均有显著的改进。 By using the single observation test case in August, 2006, the influences of length scale on radar radial wind and the super typhoon Saomai factor and covariance static background error covari- ance in typhoon data assimlation on the typhoon track and intensity forecasting are studied. Results show that in high spatial and temporal resolution typhoon radar data assimilation, smaller scale factor can sig- nificantly improve the typhoon track prediction, and the impact of scale factor is larger than that of covari- ance. Furthermore, based on the above test results, the influence of the horizontal and vertical localiza- tion coefficient of the "flow dependent" in WRFDA-Hybrid system on typhoon prediction is investigated. Results indicate that reasonable analysis can be obtained when the equivalent influence radius occurrs in both horizontal localization of "flow dependent" and the length scale factor of static background error co-variance. Meanwhile, aimed at the spatial distribution features of radar observation data, a new vertical localization scheme for the radar detection height is proposed, which is able to better forecast typhoon in- tensity and track.
出处 《气象科学》 北大核心 2015年第2期150-159,共10页 Journal of the Meteorological Sciences
基金 国家重点基础研究计划(973计划)项目(OPPAC-2013CB430102) 国家自然科学基金资助项目(41375025) 江苏省普通高校研究生科研创新计划(CXZZ11-0606 CXZZ12-0490 CXZZ13-0501)
关键词 台风 背景误差协方差 WRF模式 多普勒雷达资料 Typhoon Background error covariance WRF model Doppler radar data
  • 相关文献

参考文献3

二级参考文献53

  • 1Barker, D. M., W. Huang, Y.-R. Guo, A. Bourgeois, and Q. Xiao, 2004: A three-dimensional variational (3DVAR) data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897-914. 被引量:1
  • 2Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495-518. 被引量:1
  • 3Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124: 1256-1271. 被引量:1
  • 4Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 12T, 1433-1452. 被引量:1
  • 5Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atrnos. Sci., 46, 3077-3107. 被引量:1
  • 6Girard, D. A., 1989: A fast "Monte-Carlo crossvalidation" procedure for large least squares problems with noisy data. Numerische Mathematik, 56, 1-23. 被引量:1
  • 7Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note TN- 398+STR, 138pp. 被引量:1
  • 8Hollingsworth, A., and P. Lonnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111-136. 被引量:1
  • 9Hong, S.-Y., Yign Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318- 2341. 被引量:1
  • 10Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246pp. 被引量:1

共引文献20

同被引文献106

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部