期刊文献+

基于兴趣社区和信任邻居的混合推荐研究 被引量:5

Hybrid Recommended Model Based on Communities of Interests and Trust Neighbors
原文传递
导出
摘要 个性化推荐系统中精确性与多样性似乎是一个鱼和熊掌不可兼得之难题。本文集成基于兴趣社区的用户偏好匹配算法和基于信任邻居的多样性信息推荐算法,构建一个融合精确性和多样性的混合信息推荐模型。实验结果显示:该方法在对推荐结果准确性影响很小的情况下明显提高了推荐列表的多样性。 This paper integrated user preferences matching algorithm which is based on communities of interests and diver- sity information recommendation algorithm based on trust neighbors to design hybrid information recommendation model which merge the attribution of accuracy and diversity. From experiment and evaluation, this model can increase the diversi- ty of recommendations with only a minimal accuracy loss.
作者 刘启华
出处 《情报科学》 CSSCI 北大核心 2016年第2期65-69,共5页 Information Science
基金 江西省教育厅科技项目(GJJ13290)
关键词 个性化推荐系统 混合推荐 兴趣社区 信任邻居 personalized recommender systems hybrid recommender communities of interests trust neighbors
  • 相关文献

参考文献18

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:437
  • 2安维,刘启华,张李义.个性化推荐系统的多样性研究进展[J].图书情报工作,2013,57(20):127-135. 被引量:38
  • 3张富国.基于标签的个性化项目推荐系统研究综述[J].情报学报,2012,31(9):963-972. 被引量:14
  • 4张富国,徐升华.基于信任的电子商务推荐多样性研究[J].情报学报,2010,29(2):350-355. 被引量:25
  • 5Mcnee S M, Riedl J, Konstan, J A not enough: how mender systems Conference on accuracy metrics [C]//Proceedings Being accurate is have hurt recom- of the CHI'06 Human Factors in Computing Sys-terns. New York : ACM, 2006: 1097-1101. 被引量:1
  • 6Zhou Tao, Kuscsik Z, Liu Jianguo ,et al. Solving the apparent diversity-accuracy dilemma of recommend- er systems [J]. Proceedings of the National Academy of Sciences of the USA, 2010, 107(10): 4511-4515. 被引量:1
  • 7Hu K, Pu P. Helping Users Perceive Recommenda- tion Diversity [C]//Proceedings of the Workshop on Novelty and Diversity in Recommender Systems. New York: ACM, 2011: 43-50. 被引量:1
  • 8Adomavicius G, Kwon Y O. Toward more diverse recommendations: Item re-ranking methods for rec- ommender systems [C]// Proceedings of the 19th Workshop on Information Technology and Systems, 2009: 248-252. 被引量:1
  • 9Zhang Zi-Ki, Zhou Tao, Zhang Yi-Cheng. Personalized recommendation via integrated diffusion on user-item-tag tripartite graohs [J]. Physica A, 2010, 389(1): 179-186. 被引量:1
  • 10Zhang Yi-Cheng, Blattner M, Yu Yi-Kuo. Heat conduc- tion process on community networks as a recommendation model [J]. Phys Rev Lett, 2007, 99(15): 1-4. 被引量:1

二级参考文献264

  • 1余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186 被引量:1
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201 被引量:1
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006 被引量:1
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58 被引量:1
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749 被引量:1
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354 被引量:1
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70 被引量:1
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87 被引量:1
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217 被引量:1

共引文献505

同被引文献62

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部